Spectroscopic Atlas of Atmospheric Microwindows in the Middle Infra-Red

2nd edition

Arndt Meier, Geoffrey C. Toon, Curtis P. Rinsland, Aaron Goldman and Frank Hase

> IRF Technical Report 048 April 2004

> > ISSN 0284-1738

INSTITUTET FÖR RYMDFYSIK

Swedish Institute of Space Physics

Kiruna, Sweden

Spectroscopic Atlas of Atmospheric Microwindows in the Middle Infra-Red

2nd revised edition

Arndt Meier¹ Swedish Institute of Space Physics, Box 812, SE-981 28 Kiruna, Sweden

Geoffrey C. Toon JPL Jet Propulsion Laboratory, 4800 Oak Grove Drive, Pasadena, CA 91109, USA

Curtis P. Rinsland NASA Langley Research Center, Mail Stop 401a, Hampton, VA 23681-0001, USA

Aaron Goldman Department of Physics, University of Denver, Denver, CO 80208, USA

Frank Hase Institut für Meteorologie und Klimaforschung, Forschungszentrum Karlsruhe, PO Box 3640, D-76021 Karlsruhe, Germany

IRF Technical Report 048 ISSN 0284-1738

Printed in Sweden Swedish Institute of Space Physics Kiruna, 2004

¹Now at Wollongong University and ALS Ltd, Beaconsfield, NSW, Australia. Contact: arndt@uow.edu.au, arndt@apollolifesciences.com

Contents

1	Intr	roduction	5
2	\mathbf{Dat} 2.1	a description Description of the simulated and observed spectra presented	7 7
	$2.2 \\ 2.3$	Overview over the microwindows studied	$\begin{array}{c} 11 \\ 19 \end{array}$
3	Mai	in part: The illustrated microwindow atlas	23
Aj	ppen	dices	511
\mathbf{A}	Con	nparison of Kiruna spectra with other selected observation sites	511
	A.1	Description of participating observation sites	511
		A.1.1 Eureka, Canadian Arctic	511
		A.1.2 Ny-Ålesund, Svalbard (European Arctic)	513
		A.1.3 Kiruna, Arctic Sweden	513
		A.1.4 Harestua, Norway	514
		A.1.5 NPL Teddington, UK (mobile instrument)	514
		A.1.6 Jungfraujoch, Swiss Alps	515
		A.1.7 Toronto, Canada	515
		A.1.8 Tsukuba, Japan	515
		A.1.9 Kitt Peak, Arizona	516
		A.1.10 Teneriffe, Canary Islands	516
		A.1.11 Research vessel Polarstern, Atlantic shipcruise 1996	516
		A.1.12 Maido Summit, Réunion Island	516
		A.1.13 Wollongong, Australia	517
		A.1.14 Lauder, New Zealand	517
		A.1.15 Arrival Heights, Antarctica	517
	A.2	Comparison of Chloronitrate	518
	A.3	Comparison of Nitric Acid	524
	A.4	Comparison of Water Vapour	531
	A.5	Comparison of Hydrogen Chloride	535
	A.6	Comparison of Hydrogen Fluoride	541
в	Oth	er spectra of special interest	547
	B.I	Tropospheric HCl pollution:	547
	B.2	CIO Observations above Aberdeen	548
	B.3	Lunar spectra	549
	B.4	Polar stratospheric ice clouds	554
	B.5	Intense bushfires in Australia	555
\mathbf{C}	The	e infrared solar spectrum (by Frank Hase)	561
	C.1	Introduction	561
	C.2	Astrophysical background	561
		C.2.1 The solar continuum	561
		C.2.2 Solar lines	562
		C.2.3 Solar rotation and microturbulence	563
		C.2.4 Solar activity	564

	C.3	Observ	vations	. 565
	C.4	Model	ling	. 565
	C.5	The sc	lar spectra shown in this work (by A. Meier and F. Hase)	. 566
		C.5.1	Simulated spectrum by Frank Hase	. 566
		C.5.2	ATMOS spectra from space	. 567
		C.5.3	Observations from NOAO, Kitt Peak	. 567
		C.5.4	GGG/GFIT solar spectra	. 568
		C.5.5	Other simulations	. 568
D	Der	ivation	of pseudo-lines from laboratory cross-sections (by G.C. To	on
	and	B. Ser	n)	570
	D.1	Introd	\hat{uction}	. 570
	D.2	Advan	tages of using pseudo-lines	. 570
	D.3	Spacin	g of pseudo-lines	. 571
	D.4	Line st	rength	. 572
	D.5	Molecu	iles and spectral intervals covered	. 573
	D.6	CIONO	D_2 pseudo-linelist	. 573
		D.6.1	Introduction	. 573
		D.6.2	Description	. 573
		D.6.3	Pseudo-line spacing	. 574
		D.6.4	Discussion	. 575
		D.6.5	Implementation	. 575
		D.6.6	Calculation of S and E "	. 575
\mathbf{E}	The	spect	roscopic data used in this work	577
	-1	-		F 0 0
A	cknov	vieage	ments	582
Re	efere	nces		583

1 Introduction

This second edition of the infrared microwindow atlas contains a collection of spectral microwindows commonly used or recently suggested for ground-based, high resolution, infrared solar absoption spectroscopy. These solar observations are aimed at quantifying the abundance of trace species in the terrestrial atmosphere. A microwindow is a narrow spectral interval that allows to observe a specific atmospheric absorber unambiguously. The width of a microwindow may vary but is typically between 0.1 and $5cm^{-1}$ wide, though wider windows may in some cases be used or multiple narrow windows may be combined in any particular retrieval.

The spectra and corresponding simulations shown in the figures are representing solar absorption spectra recorded in Arctic Scandinavia on 15/Mar/1997 (500 to $4370cm^{-1}$) and 01/Apr/1998 (3950 to $9000cm^{-1}$). The printed atlas discusses close to 250 microwindows.

Lively discussions at the annual meetings of the infrared working group of the Network for Detection of Stratospheric Change (NDSC) have demonstrated a continued high interest in an up-to-date reference work on commonly used microwindows in the field of infrared groundbased remote sensing. The present work attempts to summarise the collective knowledge that the NDSC community has on this topic. The work of many past and present experts in the field have contributed to this compilation and the authors wish to express their thanks to all of them.

At present, no recommendations on the optimum selection of microwindows for individual species are provided. That task is beyond the scope of the present work and also depends on the observation site and instrumental parameters. However, where inconsistencies between observation and simulations are striking, or in cases where common pitfalls have been reported, we provide comments to highlight potential problems.

Several microwindows have been noted previously in the literature, and we have included a list of references citing their use. We are aware that the current edition is still incomplete, and we encourage our readers to help us fill in the gaps, extend, and improve the atlas.

2 Data description

2.1 Description of the simulated and observed spectra presented

The main purpose of this atlas is to illustrate suitable absorption features for the quantitative analysis of ground-based solar infrared-spectra and to identify all significant, overlapping atmospheric and solar interferences. Thus, the main part of this atlas consists of an extensive set of figures that show the calculated absorptions of different atmospheric and solar species separately as well as an example of a fitted observed spectrum.

A microwindow is a narrow spectral interval, typically about one wavenumber wide, that allows the observation of the atmospheric absorption features of a particular molecular constituent. Ideally, this observation window is free from interferences of either solar or terrestrial origin. However, given that about one million absorption lines are known between 500 and 9000 cm^{-1} , chances are that there will be some interferences. The aim of this atlas is to illustrate the absorptions of any one molecule of interest along with all interfering signals in a particular microwindow under "typical" conditions. The experienced researcher may use that information as a base for judging the merits and uncertainties in retrieving total column amounts or volume mixing ratio profiles from any particular microwindow. It is often advisable to retrieve a target molecule by analysing multiple microwindows simultaneously as the combined information can help reduce the uncertainties introduced by interfering molecules significantly – if used skillfully.

The *a*-priori Volume Mixing Ratio (VMR) profiles used in all simulations are based on a Kiruna climatology incorporating several satellite derived monthly mean profiles. Some key parameters are listed in Table 2.1. Pressure and temperature profiles are based on local radio sonde data splined into NCEP data for altitudes above 30km. The supplemental DVD contains the model atmosphere, the a-priori profiles, a description of the underlying climatology data, the linelist and all other software used.

Table 2.2 (page 11) lists the microwindows discussed in the main section, ordered by the targeted absorption species arranged in alphanumerical order. Some details on the spectroscopic properties of the central absorption line of interest are provided. If no single line appears, but instead several features are present in the microwindow, the line position is marked with an asterisk '*)' and the spectroscopic details given represent the parameters for the strongest line occurring in the target area. Explicit isotopic identifications are listed throughout. This information can be decoded from the index number (see below).

For each entry in Table 2.2 the reader finds a detailed description in the atlas with two figures each. The figures are ordered by wavenumber and the corresponding page is listed in the last column of Table 2.2. The spectroscopic data listed is quoted from the data base used (Appendix E). The index of the species (column 2) can be decoded from Table 2.3 (page 19) and reveals the molecule and its isotopic composition. The absorption strength is listed both in cm/molec (from the spectroscopic linelist) and in effective absorption strength in percent total absorption in the line centre of the observed spectrum. The information content is this observed absorption strength divided by the total rms of the fit we achieved in our example retrieval. These last two numbers may vary considerably with site and observation conditions but are nevertheless a rough guide for a relative comparison of alternative retrieval windows for any one molecule. The temperature sensitivity column lists the change in retrieved Total Column Amount (TCA) for a +1 Kelvin perturbation in the assumed temperature profile in either the troposphere (0-12km) or the stratosphere and above (12-100km). A negative sign indicates that in an assumed warmer atmosphere the resulting TCA is underestimated. The temperatures were modified in the 205 layers FSCATM input temperature profile (*Meier et*

Table 2.1: Some characteristics of the a-priori Volume mixing ratio profiles assumed in the simulations for the contribution plots. The abundances of ClO, C_2H_4 , H_2CO and NH_3 have deliberately been chosen higher than observed. These short-lived gases are normally very weak absorbers but can reach quite high levels under certain conditions (presence of polar stratospheric ice clouds, biomass burning, industrial processing, to name but a few). Appendix B presents some striking examples that justify this highlighting.

	TCA	VMR at	VMR at		TCA	VMR at	VMR at
Molecule	molec/cm2	$1.4 \mathrm{km}$	$24.5 \mathrm{km}$	Molecule	molec/cm2	$1.4 \mathrm{km}$	$24.5 \mathrm{km}$
BRNO2	1.607 e15	4.95e-13	1.03e-09	H2O	5.467 e21	8.65e-04	5.02e-06
C2H2	5.568e15	6.07 e- 10	7.14e-16	H2O2	2.728e15	2.84e-10	2.79e-12
C2H4	1.899 e15	1.46e-10	2.03e-14	H2S	3.027 e14	1.50e-11	1.50e-11
C2H6	1.698e16	1.20e-09	1.69e-12	HBR	2.618e13	1.20e-12	1.67 e- 12
C3H8	9.856e15	6.00e-10	5.47 e- 12	HCL	2.965 e15	1.23e-12	1.60e-09
CCL2F2	1.024 e16	5.29e-10	1.69e-10	HCN	3.864 e15	1.88e-10	1.21e-10
CCL3F	4.969e15	2.70e-10	3.63e-11	HCOOH	1.224e15	1.17e-10	8.41e-15
CCL4	1.988e15	1.11e-10	1.29e-12	HDO	5.468e21	8.65e-04	5.02e-06
CF4	2.525e15	1.51e-10	7.21e-11	HF	1.162 e15	1.05e-12	6.68e-10
CFC113	1.649 e 13	8.81e-13	2.29e-13	HI	6.053 e13	3.00e-12	3.00e-12
CH3BR	1.576e14	9.00e-12	8.39e-13	HNO3	1.838e16	2.78e-11	8.19e-09
CH3CCL3	1.491e15	8.00e-11	8.41e-12	HO2	1.102 e14	6.48e-12	9.86e-12
CH3CL	1.058e16	6.04 e- 10	2.80e-11	HO2NO2	1.707 e14	2.32e-12	1.18e-11
CH3D	3.292 e 19	1.80e-06	8.25e-07	HOCL	5.053 e13	2.78e-13	1.94e-11
CH3F	7.500 e12	4.00e-13	1.03e-13	HONO	6.291 e12	4.04e-13	1.06e-12
CH3I	5.254 e13	3.00e-12	2.80e-13	N2	1.576e25	7.81e-01	7.81e-01
CH4	3.292 e 19	1.80e-06	8.25e-07	N2O	5.992 e18	3.14e-07	1.19e-07
CHCL2F	2.753 e14	1.47e-11	6.74 e- 12	N2O5	5.653 e13	3.51e-16	7.90e-11
CHF2CL	3.167 e15	1.74e-10	6.11e-11	NH3	4.066e14	4.40e-11	1.17e-15
CLO	2.818e14	5.00e-15	2.17e-10	NO	2.232 e15	9.56e-12	1.20e-09
CLONO2	1.887 e15	1.03e-14	1.21e-09	NO2	3.485 e15	1.75e-11	2.98e-09
CO	2.274e18	1.83e-07	1.37e-08	O2	4.090e24	2.03e-01	2.03e-01
$\rm CO2$	7.420e21	3.69e-04	3.60e-04	O3	1.006e19	3.62e-08	3.80e-06
COCL2	4.179 e 14	2.24e-11	2.35e-12	O3667	1.082 e19	3.62e-08	3.80e-06
COCLF	7.267 e13	2.40e-13	3.19e-11	O3668	1.085 e19	3.62e-08	3.80e-06
COF2	3.009e14	5.24 e- 13	2.08e-10	O3676	1.061e19	3.62e-08	3.80e-06
F134A	1.809e14	9.55e-12	5.38e-12	O3686	1.062 e19	3.62e-08	3.80e-06
F141B	2.097 e14	1.11e-11	6.24 e- 12	OCLO	2.018e13	1.00e-12	1.00e-12
F142B	2.016e14	1.07e-11	6.00e-12	OCS	8.370 e15	4.31e-10	9.94 e- 12
H217O	5.467 e21	8.65e-04	5.02e-06	OH	3.415e13	5.00e-14	1.18e-12
H218O	5.467 e21	8.65e-04	5.02e-06	SF6	1.023 e14	5.33e-12	3.16e-12
H2CO	5.000 e15	4.37e-10	2.53e-11	SO2	4.792 e15	2.91e-10	3.13e-11

al, 2003 & 2004); i.e. before the raytracing calculation was performed.

The first figure of each pair of figures is termed the contribution plot. It shows the contribution that each individual molecule makes to the total signal and compares the resulting sum with the observed spectrum. For the creation of the single species simulations an improved version of the simul109f code (see below) was used. The calculated absorptions represent the total column amounts according to the *a-priori* VMR profiles used and are uncertain by several percent. Wherever possible, the *a-priori* VMR–profile is scaled to match a total column amount known from previous analysis. However, for weak absorbers that we could not quantify reliably, like SO_2 , CH_2O , SO_2 , ClO, etc, the uncertainties are much larger.

There is to date no comprehensive treatment of solar interferences available for standard analysis software. To start with, there is no equivalent to the HITRAN linelist available for solar absorbers. Three strategies often employed are either to deweight all intervals featuring solar interferences, to subtract a matching extra-terrestrial solar spectrum, or to simulate the solar interferences in a separate module of the retrieval code. SFIT, for example, provides a simplified model based on the Mineart formulae for solar CO interferences. The elegant alternative of using an extra-terrestrial solar spectrum, or at least a very high altitude solar spectrum, is available to only a few instruments (ATMOS space mission, balloon instruments). Possible are also combinations of these approaches.

Appendix C takes a more in-depth view at simulating solar lines and describes the solar spectra and simulations used in this work. Whichever way you choose to tackle the solar interference problem, it is very useful to know whether a microwindow contains solar lines and of what nature these interferences are. Hence, each plot shows the solar component based on observed spectra as well as the often humble attempts of simulating them. The solar spectrum shown may be of different origin depending on the (limited) availability of observed solar spectra as indicated in the plots and tables:

- **Solar(A)** ATMOS spectrum observed from space in 1989 (average over 20 spectra prepared by Kurucz). and available for the spectral interval 631 to $4700cm^{-1}$.
- **Solar(D)** Denver University solar OH simulations used for the spectral interval 500 to $631 cm^{-1}$
- **Solar(G)** GGG/GFIT simulations based on ATMOS space & MK-IV balloon FTIR derived pseudolines and used for the spectral intervals 4700 to 6420 and 7584 to $8200cm^{-1}$.
- **Solar(N)** NOAO observations from the Kitt Peak observatory and used for the spectral intervals 6420 to 7584 and 8200 to $9000cm^{-1}$.

The electronic supplement contains additional solar spectra including ATMOS spectra from 1994, the new solar simulations by Frank Hase, and the solar spectra based on the Minneart formulae. A number of solar features can be identified with the help of the solar atlas by *Geller* (1992). The simulated solar spectrum "Solar-sim" shown throughout the plots was created with the solar simulation model from the SFIT and simul109 packages using a combination of solar CO lines from the Minneart formulae, the (renormalised) solar OH linelist from the University of Denver and a number of pseudo-lines from Arndt Meier (derived from ATMOS observations). For details see Appendix C.

The second figure for each microwindow gives an example of a simulated spectrum fitted to the recorded spectrum as obtained with the SFIT2 algorithm (e.g. *Connor et al.*, 1998; *Rinsland et al.*, 2003; *Pougatchev et al.*, 1995). The lower part shows the observed spectrum (solid line) and the simulated spectrum (dashed line, shifted vertically for clarity), while the upper part of the figure shows the residuals (recorded minus simulated spectrum). Below the second figure there is a short table that describes the spectrum and the retrieval results. All species that have absorption lines in the spectral interval shown in the corresponding contribution plot are listed in the order of descending absorption strength.

The spectra presented in the main section of the atlas were recorded in Arctic Scandinavia at zenith angles close to 70° . The instrument used is a commercial BRUKER 120-HR FTS and is located in Kiruna in northern Sweden ($67.84^{\circ}N$, $20.41^{\circ}E$, 419~m above median sea level). It is operated by the *Institutet för Rymdfysik* (Swedish Institute for Space Physics) in cooperation with the *Forschungszentrum Karlsruhe* and the *University of Nagoya*. Note that typical spectra from a high altitude, a tropical, or a southern hemisphere site may look quite different. See Appendix A to get some ideas.

The middle infrared section features spectra recorded on 15/Mar/1997 with an optical resolution of $0.0035cm^{-1}$, (corresponding to 257.14cm maximum optical path difference or OPD) and using a boxcar apodisation function. The near infrared spectra were recorded on the 01/Apr/1998 at a resolution of $0.0075cm^{-1}$ (120cm OPD) again using boxcar apodisation. The simulations shown in the main section of the atlas were carried out for a maximum optical path difference (OPD) of 257.14cm (middle–IR) and $120.0cm^{-1}$ (near–IR), a field of view between 1.91 and 4.06mrad, and a perfect instrumental line shape (ILS) with boxcar apodisation, hence matching the observation conditions closely.

The spectroscopic data base used for the simulations is an updated and extended linelist based on the HITRAN 2000 linelist (*Rothman et al.*, 2003) with a number of updates and additions taken from various sources. For details see Appendix F. Please note that although considerable efforts were made to compile the best linelist available, it is definitely short of perfect.

The software employed to calculate the simulations is an extended and customised version of the Langley Spectral Simulation Code Sim109f that we refer to as sim109g-atlas. It incorporates numerous improvements adapted from the SFIT2 version 3.81 and a number of additions to its capabilities, simulation products and user interface (A. Meier, unpublished, 2003). All software used is available on the supplemental DVD as Windows or OS/2 executables. The source code is available on request from the main editor (for some 3rd party modules restrictions may apply).

The observed and simulated spectra in the electronic supplement are provided primarily in the Bruker OPUS-IRTM data format. Dr Axel Keens from Bruker Optik GmbH, Rudolf-Plank-Str. 27, D-76275 Ettlingen, Germany, kindly provided permission to distribute their free viewer program for Microsoft WindowsTM operating systems. The copy included on the DVD is dated Aug 2003. Please check http://www.brukeroptics.com/downloads/index.html for the most recent version. Additionally, the electronic supplement contains spectra in the Bomem GRAMSTM and the SFIT binary formats. The former may be viewed with either the Bruker viewer (provided) or with a native Bomem software (not provided). The SFIT spectra may be viewed with the somewhat antiquated DOSTM program 'Specview' (by A. Meier) included in the supplement. The 'Specview' and 'Pbpview' software are presently undergoing a major re-design and should become available soon as a modern cross-platform application.

All figures are plotted with the GNUPLOT V3.81 software (http://www.gnuplot.info, http://www.sci.muni.cz/mikulik/gnuplot/)) and preparation of the plots is carried out with programs from the 'SFIT-Tools' created by one of us (A. Meier). A subset of 60 microwindows had been published earlier in a similar form by Meier (1997) and additional details on the data preparation and software is found in that reference. The text and final layout was created with the free software IAT_EX in its VTex/2 distribution for OS/2 (MicroPress Inc.).

2.2 Overview over the microwindows studied

Table 2.2: This table lists all 371 absorption lines that are discussed and illustrated in the main section of this work. The investigated species is listed in alphanumerical order in the first column followed by the molecular index that details its isotopic composition (see Table 2.3, page 19). ν_0 is the central line position. If multiple lines are present, the line position is marked with an asterisk '*)' and the line given represents the strongest line occurring in the targeted interval. The absorption strength is listed both in cm/molec at 296 K (quoted from the spectroscopic linelist) and in effective absorption strength in percent total absorption in the line centre (derived from the example observed Kiruna spectrum). The information content 'Info Cont.' is this observed absorption strength divided by the total rms of the fit we achieved in our example retrieval. These last two numbers may vary considerably with site and observation conditions. E'_{LST} is the lower state energy. The temperature sensitivity column 'T-depen' lists the change in retrieved Total Column Amount (TCA) for an increase of 1 Kelvin in the assumed temperature profile in either the troposphere (0-12km) or the stratosphere and above (12-100km). A negative sign indicates that the TCA retrieved decreases with a 1K increase in temperature. Note that the lower state energy allows to calculate the theoretical temperature dependency of the target line, while the 'T-depen' columns list the observed temperature dependency for a specific Kiruna spectrum; i.e. the latter include the effects from interfering lines. Detailed figures and additional information for each entry are found on the page given in the last column.

chemical	molec	$ u_0$ in	absorption	strength	Info	$E_{LST}^{\prime\prime}$	T-depe	en [%/K]	pa-
species	index	cm^{-1}	cm/molec	%	Cont.	cm^{-1}	trop	strat	ge
$BrNO_2$	641	$787.1636^{*)}$	2.23e-22	1.6	5.4	88.2	+.019	241	41
$BrNO_2$	642	$787.1769^{*)}$	2.25e-22	1.6	5.4	88.2	+.019	241	41
C_2H_2	401	766.7241	4.31e-19	4.8	14.3	282.3	874	+.022	27
C_2H_2	401	776.0810	2.67e-19	1.9	8.0	446.9	773	+.069	33
C_2H_2	401	3250.6624	2.02e-19	2.5	33.9	214.1	270	002	401
C_2H_2	401	3304.9655	2.46e-19	3.0	41.0	105.9	-1.14	-1.50	411
C_2H_4	391	941.8478	3.44e-20	<0.1	0.3	135.9	n.a.	n.a.	81
C_2H_4	391	947.1985	3.20e-20	<0.1	0.3	358.1	n.a.	n.a.	83
C_2H_4	391	950.0562	8.07e-20	<0.1	0.5	98.1	+1.59	+.203	85
C_2H_4	391	950.6498	7.08e-20	0.1	0.8	64.7	+1.59	+.203	85
C_2H_6	381	$2976.7919^{st)}$	6.64e-21	17.2	150.5	121.5	+.221	025	367
C_2H_6	381	$2983.3760^{*)}$	1.94e-20	26.8	224.4	105.4	+.040	+.012	369
C_2H_6	381	$2986.7230^{*)}$	3.21e-20	25.4	133.4	87.5	+.338	027	371
CCl_2F_2	320	923.0600 ^{*)}	2.44e-20	18.7	103.7	492.0	+.561	+.163	67
CCl_2F_2	320	1161.0400*)	6.27e-20	35.6	142.3	178.0	+.096	+.008	143
CCl_3F	330	846.0500* ⁾	2.30e-20	8.0	20.8	505.0	+1.01	+.149	59
CCl_3F	330	846.9600* ⁾	2.26e-20	8.0	20.8	468.0	+1.01	+.149	59
CCl_3F	330	848.9000* ⁾	2.37e-20	8.0	20.8	388.0	+1.01	+.149	59
CCl_3F	330	850.0200 ^{*)}	2.27e-20	8.0	20.8	374.0	+1.01	+.149	59
CF_4	310	1285.0350* ⁾	1.67e-19	3.8	7.2	160.0	-2.17	529	175
CF_4	310	$1285.3375^{*)}$	1.78e-19	3.8	7.2	215.0	-2.17	529	175
CF_4	310	$1285.1075^{*)}$	1.04e-19	3.8	7.2	166.0	-2.17	529	175
CH_4	61	1202.4210	1.04e-21	39.4	264.7	1096.1	-2.23	314	153
CH_4	61	1204.0328	5.30e-22	26.1	212.8	1251.6	-2.55	268	155
CH_4	61	2600.2726	3.45e-22	35.1	175.0	219.9	194	028	291
CH_4	61	2651.0331	1.67e-22	25.2	237.2	31.4	+.405	+.035	299

chemical	molec	$ u_0$ in	absorption	strength	Info	$E_{LST}^{\prime\prime}$	T-depe	en [%/K]	pa-
species	index	cm^{-1}	cm/molec	%	Cont.	cm^{-1}	trop	strat	ge
CH_4	61	2657.7116	1.54e-22	20.6	176.9	104.8	+.144	+.029	301
CH_4	61	2742.7428	2.35e-21	95.6	607.2	219.9	029	020	307
CH_4	61	2761.3523	1.82e-23	52.4	377.0	689.9	057	006	311
CH_4	61	2778.6428	5.22e-22	47.1	409.7	219.9	026	020	319
CH_4	61	2819.8338	6.10e-22	69.3	486.6	10.5	+.209	+.041	327
CH_4	61	2835.6763	1.89e-22	25.0	342.5	62.9	+.385	+.034	333
CH_4	61	2855.6328	6.88e-23	9.7	97.7	62.9	112	+.161	337
CH_4	61	2859.9876	8.71e-23	11.7	143.9	104.8	+.241	+.022	339
CH_4	61	2898.6953	9.77e-22	78.7	1051.6	157.1	+.214	+.003	349
CH_4	61	2903.8757	6.01e-22	54.6	734.4	219.9	087	019	351
CH_4	61	2923.6880	1.61e-22	14.1	198.7	293.2	582	+.086	357
CH_4	61	2941.4116	2.24e-22	17.7	128.7	470.9	-1.52	212	365
CH_4	61	4126.6561	1.50e-22	23.4	224.6	104.8	+.248	+.027	423
CH_4	61	4126.6724	7.04e-23	18.5	178.4	104.8	+.248	+.027	423
CH_4	61	4265.4212	4.95e-22	51.8	376.1	157.1	+.004	001	431
CH_4	61	4277.8105	3.29e-22	30.3	241.8	293.2	204	036	435
CH_4	61	4285.1555	2.77e-22	31.4	185.8	62.9	+.157	+.226	437
CH_4	61	4296.1496	2.59e-22	35.2	136.3	31.4	+.275	+.016	439
CH_4	61	5829.8684	2.76e-22	31.9	111.3	10.5	+.552	+.076	479
CH_4	61	5907.9194	5.51e-23	5.8	48.1	104.7	+.188	+.046	481
CH_4	61	5910.1250	1.30e-22	11.1	75.1	293.1	151	044	483
CH_4	61	5983.1942	2.72e-22	39.9	222.8	31.4	+.449	+.057	485
CH_4	61	6055.5279	3.04e-23	3.7	33.1	62.7	+.096	+.083	489
CH_4	61	6105.6261	3.41e-22	42.7	270.5	470.7	579	133	499
CH_4	62	1231.4358	7.28e-23	11.0	87.8	575.3	733	068	163
CH_4	62	1234.2262	1.82e-22	17.1	108.1	575.2	-1.05	129	167
CH_4	62	1234.2262	1.82e-22	17.1	142.0	575.3	957	133	169
CH_4	62	2924.8235	1.82e-23	3.7	59.5	157.1	358	+.076	359
CH_4	63	1199.4936	8.06e-24	1.4	4.3	116.4	107	101	151
CH_4	63	1199.9945	6.28e-24	1.5	4.6	251.3	107	101	151
CH_4	63	1204.3278	9.99e-24	2.0	16.5	328.2	623	462	155
CH_4	63	3061.4140	5.09e-23	5.6	62.1	89.9	069	+.029	387
CHF_2Cl	420	829.0551 ^{*)}	4.90e-20	3.8	13.8	169.0	+.004	006	49
ClO	181	830.6077	2.43e-21	<0.1	<0.5	72.5	N.A.	N.A.	51
ClO	181	833.2974	2.23e-21	<0.1	<0.5	47.7	N.A.	N.A.	53
ClO	181	834.6249	2.07e-21	<0.1	<0.5	37.2	N.A.	N.A.	55
$ClONO_2$	270	780.2200 ^{*)}	1.48e-20	4.1	14.3	164.2	+.066	+.435	35
CO	51	2111.5430	3.72e-19	100.0	220.8	138.4	+.606	+.106	207
CO	51	2111.5430	3.72e-19	100.0	220.8	138.4	+.606	+.106	207
CO	51	2158.2997	3.34e-19	99.8	571.8	23.1	+.128	047	217
CO	51	4274.7407	2.65e-21	20.0	129.9	23.1	+.135	+.016	433
CO	51	4285.0089	3.57e-21	23.7	140.5	80.7	+.508	+.080	437
CO	52	2057.8575	3.49e-21	17.8	96.0	202.1	425	249	203
CO	52	2069.6559	3.98e-21	32.6	172.3	102.9	+.135	+.064	205
CO_2	21	927.0083	5.22e-24	15.2	92.8	1966.2	-3.76	-1.10	69
CO_2	21	932.9604	9.91e-24	31.7	189.8	1800.1	-3.83	-1.03	73
CO_2	21	934.8945	1.18e-23	37.8	223.3	1751.0	-3.79	976	75
CO_2	21	936.8038	1.38e-23	44.6	284.1	1704.9	-3.71	928	77
CO_2	21	938.6882	1.58e-23	49.7	271.4	1662.0	-3.59	928	79
CO_2	21	942.3833	1.95e-23	62.5	390.9	1585.6	-3.47	849	81
CO_2	21	967.7075	1.79e-23	63.3	380.1	1416.3	-3.05	726	93

chemical	molec	$ u_0$ in	absorption	strength	Info	$E_{LST}^{\prime\prime}$	T-depe	en [%/K]	pa-
species	index	cm^{-1}	cm/molec	%	Cont.	cm^{-1}	trop	strat	ge
CO_2	21	3161.6919	3.04e-25	8.6	111.5	273.9	361	052	389
CO_2	21	3204.7604	5.09e-25	13.8	194.6	316.8	439	093	395
CO_2	21	3315.7946	1.72e-24	37.6	440.2	362.8	591	148	417
CO_2	21	4887.6649	1.49e-23	95.6	373.5	994.2	-1.85	491	461
CO_2	21	4890.8190	5.13e-24	27.1	116.8	1244.2	-2.24	545	463
CO_2	21	4919.7575	3.37e-24	16.2	74.7	1559.4	-2.64	867	473
CO_2	21	6072.8428	7.41e-25	15.7	142.0	7.8	+.331	+.073	491
CO_2	21	6085.8833	1.98e-24	38.0	325.8	60.9	+.256	+.034	493
CO_2	21	6098.7790	1.20e-24	16.4	124.3	362.8	484	120	495
CO_2	21	6191.1724	3.23e-24	32.9	290.8	639.6	-1.01	295	501
CO_2	21	6254.6668	3.01e-24	27.4	201.8	704.3	-1.23	297	503
CO_2	21	6483.1375	1.38e-24	27.6	212.8	234.1	139	056	505
CO_2	21	6495.0753	1.52e-24	35.0	247.9	42.9	+.319	+.049	507
CO_2	22	4885.8159	2.02e-24	51.9	248.7	2.3	+.096	+.272	455
CO_2	22	4891.1846	4.92e-24	84.9	365.5	7.8	+.176	+.140	463
CO_2	22	4891.1846	4.92e-24	84.9	399.9	7.8	+.547	+.113	465
CO_2	22	4892.6575	6.61e-24	92.5	312.6	16.4	+.270	+.088	467
CO_2	22	4902.2035	9.74e-24	96.7	341.4	163.9	+.044	015	469
CO_2	22	4911.4478	3.09e-24	47.5	142.0	519.6	777	203	471
CO_2	23	2481.0844	1.74e-25	5.3	67.2	278.3	-1.17	787	253
CO_2	23	2481.0844	1.74e-25	5.8	48.6	278.3	084	058	255
CO_2	23	2486.1479	2.35e-25	7.6	53.9	154.6	950	699	257
CO_2	23	2487.5988	2.43e-25	9.9	12.2	125.9	897	605	259
CO_2	23	2489.0517	2.44e-25	9.3	159.7	100.1	152	+.035	261
CO_2	23	2489.7790	2.42e-25	10.0	174.4	88.3	152	+.035	261
CO_2	23	2492.6940	2.16e-25	9.5	166.7	48.6	+.074	084	263
CO_2	23	2517.1010	2.43e-25	9.5	221.1	170.1	032	017	265
CO_2	23	2523.0910	1.61e-25	5.4	95.2	320.2	662	109	269
CO_2	23	2523.8405	1.49e-25	4.9	95.2	342.3	662	109	269
CO_2	23	2626.6296	4.31e-25	17.1	155.0	100.1	+.098	+.007	297
CO_2	23	4879.8823	1.31e-24	24.8	114.6	342.3	576	207	451
CO_2	23	4883.5550	1.71e-24	40.3	146.4	258.4	339	070	453
CO_2	23	4886.2409	1.98e-24	47.5	196.0	203.2	236	+.004	457
CO_2	23	4887.1232	2.06e-24	49.6	254.0	186.3	+.060	012	459
CO_2	23	4890.5864	2.27e-24	56.2	242.0	125.9	+.001	+.157	463
CO_2	23	4891.4358	2.28e-24	59.3	279.1	112.7	-1.14	466	465
CO_2	23	4892.2786	2.28e-24	56.8	192.0	100.1	+.183	+.050	467
CO_2	23	4902.6309	6.83e-25	24.4	86.1	4.4	+.373	+.066	469
CO_2	23	4911.1863	1.84e-24	52.8	157.8	26.5	+.377	+.082	471
CO_2	23	4919.9492	2.14e-24	52.7	243.1	186.3	+.132	+.022	473
CO_2	23	4922.2122	1.76e-24	42.5	155.5	258.4	162	001	475
CO_2	24	4920.1675	3.52e-25	12.3	56.9	209.0	503	054	473
CO_2	24	4921.9862	3.80e-25	14.7	53.6	174.9	214	002	475
COF_2	361	1230.9436*)	2.58e-20	0.3	2.7	171.7	031	437	165
COF_2	361	1233.9731*)	3.13e-20	0.5	4.3	102.8	254	451	169
COF_2	361	1234.4356*)	2.79e-20	0.5	4.0	92.5	254	451	169
COF_2	361	1951.5865 ^{*)}	3.62e-20	0.9	7.7	63.4	019	082	187
COF_2	361	1951.9479* ⁾	3.70e-20	0.8	6.9	70.6	019	082	187
COF_2	361	1952.6658 ^{*)}	3.79e-20	0.9	8.9	86.3	022	317	189
H_2CO	201	2759.8456	4.23e-20	0.5	4.1	120.9	758	+.423	309
H_2CO	201	2761.1500	4.48e-20	0.7	4.9	113.7	770	+4.10	311
H_2CO	201	2761.4941	4.19e-20	1.4	10.2	161.2	770	+4.10	311

chemical	molec	$ u_0$ in	absorption	strength	Info	$E_{LST}^{\prime\prime}$	T-depe	en [%/K]	pa-
species	index	cm^{-1}	cm/molec	%	Cont.	cm^{-1}	trop	strat	ge
H_2CO	201	2763.4963	4.44e-20	0.3	3.7	92.6	028	289	313
H_2CO	201	2765.8454	4.23e-20	0.1	1.1	73.8	940	147	315
H_2CO	201	2778.5112	5.40e-20	1.5	12.8	240.8	-1.61	361	319
H_2CO	201	2780.9519	1.21e-20	1.0	8.0	329.0	-1.70	+.332	321
H_2CO	201	2869.8555	4.28e-20	0.3	4.7	190.8	225	+.060	341
H_2CO	201	2869.8895	2.84e-20	0.2	3.4	92.6	225	+.060	341
H_2O	11	825.1627	6.58e-24	35.9	135.6	586.5	808	+.003	47
H_2O	11	841.9028	2.45e-24	12.4	38.2	552.9	822	002	57
H_2O	11	849.5795	2.48e-23	66.6	213.5	1293.0	-2.26	007	61
H_2O	11	948.2629	1.80e-23	50.8	299.7	1327.1	-2.32	007	83
H_2O	11	953.3674	4.80e-24	18.0	108.0	1962.5	-3.25	003	89
H_2O	11	1959.6324	6.21e-24	29.3	135.2	446.5	599	+.128	191
H_2O	11	2144.8085	6.70e-24	13.5	55.2	1742.3	-1.53	005	209
H_2O	11	2819.4470	6.38e-24	24.3	170.4	782.4	-1.38	019	327
H_2O	11	2930.6506	6.74e-24	25.8	107.8	1255.9	-2.37	014	363
H_2O	11	3061.2280	1.94e-23	62.3	333.5	1201.9	-2.22	015	385
H_2O	11	3163.8269	1.78e-23	78.7	171.0	136.2	146	009	391
H_2O	11	3164.1851	1.06e-23	51.4	111.5	709.6	146	009	391
H_2O	11	3189.8770	1.77e-24	6.7	56.8	1059.6	-1.95	018	393
H_2O	11	3249.4719	1.58e-23	52.1	403.2	982.9	-1.77	013	399
H_2O	11	3315.0430	1.40e-23	28.0	172.9	1477.3	-2.92	015	415
H_2O	11	4169.0640	1.06e-24	5.2	67.9	508.8	920	020	429
H_2O	11	4556.5540	3.77e-24	33.2	138.5	300.4	090	030	441
H_2O	11	4598.7110	3.69e-24	38.4	192.1	222.1	+.180	040	443
H_2O	11	4699.7500	6.47e-24	56.9	251.5	23.8	+.542	017	445
H_2O	11	5652.5550	2.95e-24	24.8	46.6	224.8	+.347	+.044	477
H_2O	11	6011.4866	6.14e-25	7.8	36.1	586.2	-1.13	013	487
H_2O	11	6099.2974	4.91e-25	5.5	34.9	136.8	+.056	008	497
H_2O	11	6700.0889	1.13e-23	67.1	216.4	300.4	118	020	509
H_2O	12	787.6918	3.15e-25	1.7	7.0	1074.8	-2.01	+.163	43
H_2O	12	1205.0796	8.88e-25	2.9	27.4	1279.8	-3.42	118	157
H_2O	12	3019.8270	1.58e-24	9.7	53.7	445.3	868	+.026	373
H_2O	12	3165.1010	2.79e-24	25.0	54.2	23.8	+.482	034	391
H_2O	12	3205.4120	2.01e-24	16.0	165.5	172.9	+.222	006	397
H_2O	12	3299.3070	1.29e-24	8.8	122.2	79.0	+.024	+.019	407
H_2O	13	3249.9380	1.96e-25	1.6	12.7	224.3	+.213	004	399
HCl	151	2727.7819	1.12e-19	5.6	65.0	583.0	052	-1.22	305
HCl	151	2775.7612	2.88e-19	17.8	185.7	312.7	060	617	317
HCl	151	2821.5684	4.16e-19	27.6	251.2	125.2	+.035	+.017	331
HCl	151	2843.6243	3.69e-19	27.9	264.0	62.6	050	+.169	335
HCl	151	2925.8967	4.19e-19	31.1	355.9	20.9	025	+.303	361
HCl	152	2819.5605	1.33e-19	9.6	123.8	125.0	029	077	329
HCl	152	2904.1110	7.55e-20	6.8	92.1	0.0	119	+.320	351
HCl	152	2923.7322	1.34e-19	11.3	159.3	20.8	933	095	357
HCN	281	3268.2229	2.08e-19	1.3	20.3	310.3	537	122	403
HCN	281	3287.2483	3.23e-19	3.0	48.6	106.4	216	+.005	405
HCN	281	3299.5273	2.35e-19	2.0	34.6	29.6	278	+.055	409
HCN	281	3305.5440	1.30e-19	1.0	17.9	8.9	-1.38	+.167	413
HCOOH	461	1104.9481* ⁾	7.90e-21	0.7	3.5	24.4	+.317	096	137
НСООН	461	$1105.0248^{*)}$	9.89e-21	0.9	4.2	42.9	+.317	096	137
HCOOH	461	1105.0691 ^{*)}	5.66e-21	0.6	3.0	129.0	+.317	096	137

$ \text{chemical model} \nu_0 \text{ in } \text{absorption strength} \text{ into } E_{LST} I \text{-dependent of the strength} $	n [%/K]	pa-
species index cm^{-1} $cm/molec$ % Cont. cm^{-1} trop	strat	ge
HDO 491 1193.5135 5.70e-21 23.6 237.9 872.8 -1.62	+.004	149
HDO 491 1206.0199 3.07e-24 29.0 152.8 709.2 -1.06	016	159
HDO 491 1324.8088 1.22e-23 49.8 49.5 265.2079	+.054	177
HDO 491 2612.5400 3.34e-24 13.9 106.6 490.4847	023	293
HDO 491 2621.7310 5.33e-24 22.8 162.4 403.1476	002	295
HDO 491 2622.1060 5.47e-24 23.2 165.3 362.5476	002	295
HDO 491 2657.3300 5.38e-24 22.7 194.8 221.8111	+.017	301
HDO 491 2660.5120 5.47e-24 24.7 222.1 217.0 +.066	005	303
HDO 491 2855.8740 8.78e-25 5.5 51.7 116.5610	+.019	337
HDO 491 2855.9300 7.45e-25 5.5 55.4 743.1610	+.019	337
HDO 491 4130.3200 5.46e-25 2.1 24.2 15.5422	094	425
HDO 491 4144.4940 7.28e-25 4.3 68.3 46.2 +.073	034	427
<i>HF</i> 141 4038.9625 2.37e-18 64.1 292.4 41.1785	549	419
<i>HF</i> 141 4109.9363 1.59e-18 38.4 360.5 246.4338	706	421
HNO_3 121 868.1036 [*] 9.19e-21 11.2 38.7 120.0 +.026	+.387	63
HNO ₃ 121 869.4279 ^{*)} 1.16e-20 12.0 38.7 110.3 +.026	+.387	63
HNO_3 121 872.9373 [*] 8.38e-21 11.1 39.9 35.1 +.002	+.537	65
HNO_3 121 874.2321 [*] 8.24e-21 9.8 39.9 29.9 +.002	+.537	65
HNO_3 121 1325.3160 [*] 1.53e-20 12.5 12.4 317.3029	+.341	177
HO_2NO_2 251 802.5797 ^{*)} 1.53e-22 0.9 3.3 171.3 -11.7	-11.4	45
N ₂ 411 2403.5650 3.31e-28 31.6 126.1 143.2037	022	233
N ₂ 411 2411.1274 1.55e-28 15.7 90.4 179.0111	037	235
N ₂ 411 2418.6520 2.83e-28 27.6 196.9 218.8315	076	237
N ₂ O 41 1163.1315 3.15e-21 49.9 407.6 17.6 +.483	+.112	145
N ₂ O 41 1183.5154 5.70e-21 69.4 682.1 128.2 +.118	006	147
N ₂ O 41 1202.0263 1.22e-21 11.5 77.3 620.6 -1.42	145	153
N ₂ O 41 2168.7416 1.28e-20 33.1 378.1 1242.9 -2.92	376	221
N ₂ O 41 2184.4585 3.25e-20 92.2 1128.4 906.2 -2.00	261	223
N ₂ O 41 2184.5118 3.26e-20 83.3 1020.1 905.6 -2.00	261	223
N ₂ O 41 2186.0020 1.63e-19 100.0 733.3 653.2 -1.29	185	225
N ₂ O 41 2188.1894 2.12e-19 100.0 280.9 588.8 -1.07	109	227
N_2O 41 2190.4950 4.61e-20 99.8 525.7 782.4662	097	229
N_2O 41 2194.5897 4.13e-19 100.0 444.0 415.5953	072	231
N_2O 41 2442.2769 4.18e-21 52.1 418.5 231.2193	055	239
N ₂ O 41 2444.0304 4.57e-21 58.3 366.4 193.6024	028	241
N_2O 41 2444.9041 4.73e-21 59.4 373.5 176.0024	028	241
N_2O 41 2446.6458 4.98e-21 63.9 725.8 143.3 +.144	+.099	243
$\begin{bmatrix} N_2 O \\ N_2 O \end{bmatrix} = \begin{bmatrix} 41 \\ 2447.5139 \\ 128.2$	+.000	245
N_2O 41 2454.3923 4.12e-21 58.9 639.3 37.7 +.500	+.040	247
N_2O 41 2464.5001 1.63e-21 28.4 242.5 2.5 +.570	+.041	249
N_2O 41 2465.3312 2.15e-21 36.2 309.2 5.0 +.570	+.041	249
N_2O 41 2471.0986 4.87e-21 65.7 508.9 46.1 +.283	+.008	251
N_2O 41 2471.9152 5.08e-21 66.6 516.2 55.3 +.283	+.008	251
$\begin{bmatrix} N_2 O \\ N_1 O \end{bmatrix} = \begin{bmatrix} 41 \\ 24/9.9/19 \\ 44 \\ 2409.7609 \end{bmatrix} = \begin{bmatrix} 4.84e-21 \\ 59.6 \\ 762.6 \\ 762.6 \\ 762.6 \end{bmatrix} = \begin{bmatrix} 93.5 \\059 \\ 250 \\059 \end{bmatrix}$	075	253
$\begin{bmatrix} N_2 O \\ N O \end{bmatrix} = \begin{bmatrix} 41 \\ 2480.7660 \\ 41 \\ 2481.760 \\ 4.64e-21 \\ 56.6 \\ 724.0 \\ 212.0 \\059 \\ 447.0 \\ 204.0 \\059$	075	253
$\begin{bmatrix} 1V_2O \\ NO \end{bmatrix} = \begin{bmatrix} 41 \\ 2481.55/8 \\ 4.41e^{-21} \\ 4.42e^{-21} \\ 53.2 \\ 447.3 \\ 231.2 \\038$	035	255
$\begin{bmatrix} 1V_2O \\ N_1O \end{bmatrix} = \begin{bmatrix} 41 \\ 2402.34/4 \\ 4.10e^{-21} \\ 0.02e^{-21} \end{bmatrix} = \begin{bmatrix} 51.2 \\ 430.3 \\ 251.3 \\038 \\ 400 \end{bmatrix}$	035	200 057
$\begin{bmatrix} 1120 \\ N_{2}0 \\ M_{1} \\ M_{2}0 \\ M_{1} \\ M_{1} \\ M_{2}0 \\ M_{1} \\ M_{1}$	034 - 001	201
$N_{2}O$ $A1$ 2487 8070 $2.096-21$ 32.0 39.0 309.0 585	.001 _ 001	209
$N_{0}O$ 41 2492 3848 1 28e-21 12 0 211 5 588 8 -1 21	- 252	203
N_2O 41 2523.4799 2.99e-21 22.6 399.5 721.0 -1.43	193	269

chemical	molec	$ u_0$ in	absorption	strength	Info	$E_{LST}^{\prime\prime}$	T-depe	en [%/K]	pa-
species	index	cm^{-1}	cm/molec	%	Cont.	cm^{-1}	trop	strat	ge
N_2O	41	2540.3611	1.63e-20	93.4	1705.0	272.3	252	058	275
N_2O	41	2551.9157	2.20e-20	99.1	1199.0	76.3	+.286	018	283
N_2O	41	2806.3157	7.71e-22	14.3	164.7	37.7	+.382	+.028	325
N_2O	41	4711.4532	6.20e-22	11.2	99.6	176.0	+.036	012	449
N_2O	41	4708.0752	5.43e-22	9.4	75.7	231.2	205	027	447
N_2O	42	2146.5160	1.15e-21	12.5	213.1	469.9	922	112	211
N_2O	42	2149.6423	1.54e-21	19.4	143.6	389.5	489	108	213
N_2O	42	2153.7194	2.13e-21	29.8	208.7	294.0	487	127	215
N_2O	42	2157.6919	2.69e-21	39.4	225.8	212.0	521	035	217
N_2O	42	2160.6023	3.00e-21	45.9	364.2	159.2	335	027	219
N_2O	42	2185.6697	2.89e-21	36.3	266.0	37.7	+3.71	+.869	225
N_2O	42	2187.9431	3.30e-21	38.2	107.2	65.4	+.485	+.030	227
N_2O	42	2188.6875	3.37e-21	43.7	122.7	76.2	+.485	+.030	227
N_2O	42	2190.8805	3.41e-21	46.6	245.5	114.0	+.567	+.003	229
N_2O	42	2195.0847	2.88e-21	34.8	154.4	212.0	-1.32	+.073	231
N_2O	42	2560.3820	6.81e-23	1.0	19.7	37.7	118	+.029	285
N_2O	42	2562.6282	7.74e-23	0.4	9.3	65.4	211	076	287
N_2O	42	2566.2273	7.91e-23	1.1	20.3	128.2	130	003	289
N_2O	43	1250.4709	4.30e-22	6.0	45.7	223.4	566	010	171
N_2O	43	1255.6967	5.16e-22	7.5	54.3	123.9	443	038	173
N_2O	43	2187.8459	3.27e-21	41.9	117.3	110.1	008	+.084	227
N_2O	43	2188.7560	3.27e-21	51.7	145.3	97.2	008	+.084	227
N_2O	43	2194.9397	2.43e-21	29.9	132.7	29.1	+.154	+.225	231
N_2O	43	2517.1892	6.60e-23	1.5	33.7	170.0	238	017	265
N_2O	43	2521.7504	7.07e-23	1.3	35.7	97.2	410	031	267
N_2O	43	2527.0261	5.71e-23	0.7	20.5	36.4	367	012	271
N_2O	43	2529.5827	4.19e-23	0.9	26.1	17.0	373	003	273
N_2O	43	2543.7733	7.06e-23	0.8	24.6	53.4	947	163	277
N_2O	43	2549.4462	7.24e-23	0.9	16.1	153.8	263	032	279
N_2O	43	2551.4732	6.50e-23	0.7	17.5	204.8	400	060	281
N_2O	44	1227.9559	2.51e-22	4.0	31.0	218.3	213	035	161
N_2O	44	1231.3504	2.89e-22	8.4	00.0	125.3	508	+.031	163
N_2O	44	1232.1995	2.95e-22	0.0	00.0 EC C	107.6	508	+.031	163
N_2O	44	1233.8772	3.01e-22	5.4	50.0	107.0	802	039	167
	44	1234.7110	$3.00e^{-22}$	9.0	00.0 0 F	94.9	002	039	71
	111	929.0901	2.000-19	0.4	2.5	140.2	+ 750	+.011	07
NH_{2}	111	965 2520	4 60 - 10		0.4	283 6	+1 55	- 847	07 Q1
NH ₂	111	967 3463	5 680-10	0.2	0.5 3 A	203.0	n 9	ידט. בת	03
NO	211 21	1900 0706	2 32 - 20	10.0	60 E	80.0		н.а. + 11Л	181
NO	81	1900.0700	2.32e = 20	12.0	60.6	80.2	- 035	+ 114	181
NO	81	1903 1335	2.32e = 20 2.31e - 20	12.0	49.0	105 4	- 018	+ 017	183
NO	Q1	1910 70/7	1 030-20	7 0	-9.0 29.8	326 0	- 022	- 443	185
NOa	101	1598 0059	9 10 - 20	10 A	1334 7	207 9	- 155	- 075	179
NO_2	101	2881 6114	3 110-21	0 4	5 4	321 4	- 050	- 356	343
NO_2	101	2881 9236	4.28=-21	0.4	9.4	277 8	050	- 356	343
NO_2	101	2882 2730	3 940-21	0.0	6 7	284 1	- 050	- 356	343
NO	101	2887 6673	4.90-21	0.0	12 0	190 6	- 122	089	345
NO2	101	2890 3238	5.89e-21	0.9	12.7	134.9	050	+.004	347
NO ₂	101	2914.6434	6.02e-21	0.8	12.8	46.4	102	+ 282	353
NO ₂	101	2914.6520	5.70e-21	0.8	11.7	54.6	102	+.282	353
NO_2	101	2922.6261	5.05e-21	0.3	5.1	237.1	+.099	300	355

chemical	molec	$ u_0$ in	absorption	strength	Info	$E_{LST}^{\prime\prime}$	T-depe	en [%/K]	pa-
species	index	cm^{-1}	cm/molec	%	Cont.	cm^{-1}	trop	strat	ge
NO_2	101	2922.6327	4.84e-21	0.4	5.8	237.1	+.099	300	355
NO_2	101	2922.7015	5.17e-21	0.7	10.6	233.9	+.099	300	355
NO_2	101	2924.7844	3.90e-21	0.7	11.9	321.8	-1.01	924	359
NO_2	101	2924.7917	3.76e-21	0.6	9.9	349.1	-1.01	924	359
O_3	31	773.2868	3.77e-22	65.1	253.6	290.3	213	-1.15	29
O_3	31	773.3117	3.61e-22	59.4	253.6	343.4	213	-1.15	29
O_3	31	774.8417	3.31e-22	53.3	272.3	376.2	184	872	31
O_3	31	774.8853	3.62e-22	60.7	272.3	307.9	184	872	31
O_3	31	781.1807	2.97e-22	50.6	198.0	357.5	315	521	37
O_3	31	782.7720	2.83e-22	41.6	186.8	376.8	150	437	39
O_3	31	975.1705	1.74e-22	6.9	36.5	1484.3	409	-3.50	95
O_3	31	976.5119	1.57e-22	5.5	28.2	1495.0	341	-3.35	97
O_3	31	977.6600	3.10e-22	11.4	57.8	1357.0	284	-3.22	99
O_3	31	978.9563	5.53e-22	28.0	141.3	1234.1	667	-2.63	101
O_3	31	980.4040	6.73e-22	34.7	161.6	1190.5	727	-2.52	103
O_3	31	981.4870	1.83e-22	20.7	96.0	1404.3	656	-2.83	105
O_3	31	982.7663	4.36e-22	19.9	94.6	1272.9	710	-2.77	107
O_3	31	983.8910	6.19e-22	30.0	119.5	1204.3	-2.50	-2.45	109
O_3	31	984.6918	1.18e-21	58.7	236.7	1064.3	672	-2.17	111
O_3	31	986.1021	1.42e-21	70.6	255.8	1023.8	668	-2.13	113
O_3	31	987.4795	1.42e-21	69.1	236.0	1020.0	631	-2.03	115
O_3	31	988.5468	8.98e-22	44.8	169.2	1101.2	704	-2.27	117
O_3	31	989.8539	1.31e-21	70.8	240.9	1028.4	682	-2.12	119
O_3	31	990.2736	2.37e-21	90.1	284.9	907.0	614	-1.89	121
O_3	31	991.1447	1.26e-21	61.5	213.7	1023.1	657	-2.05	123
O_3	31	992.1168	1.89e-21	41.0	244.2	952.0	623	-1.84	125
O_3	31	993.7116	1.73e-21	74.5	188.9	948.2	661	-1.87	127
O_3	31	1002.7062	1.04e-21	57.0	179.4	945.2	412	-1.43	127
O_3	31	1043.4030	5.47e-22	28.4	82.6	1097.1	+2.34	+1.95	131
O_3	31	1044.0916	7.15e-22	55.5	153.0	1046.3	+.099	142	133
O_3	31	1090.4761	5.00e-22	67.2	454.7	385.7	102	092	135
O_3	31	1104.8375	3.63e-22	60.0	301.6	281.8	073	160	137
O_3	31	1146.4714	3.95e-22	55.6	467.8	372.4	148	386	139
O_3	31	1161.2893	3.35e-22	54.8	218.8	289.1	221	313	143
O_3	31	1163.4222	2.57e-22	46.7	381.7	253.9	114	109	145
O_3	31	2759.7801	2.71e-23	4.4	33.7	269.2	182	219	309
O_3	31	2781.7734	3.20e-23	9.3	94.9	8.4	093	+.327	323
O_3	31	3019.6297	3.29e-22	34.6	191.0	226.5	521	+.067	373
O_3	31	3023.3887	1.96e-22	30.2	103.3	241.1	149	+.125	375
O_3	31	3023.4442	3.39e-22	47.4	162.4	191.7	149	+.125	375
O_3	31	3023.5052	2.43e-22	36.6	125.3	222.0	149	+.125	375
O_3	31	3023.7434	3.55e-22	50.7	281.1	183.4	054	+.286	377
O_3	31	3023.8041	9.84e-23	15.4	85.7	287.9	054	+.286	377

chemical	molec	$ u_0$ in	absorption	strength	Info	$E_{LST}^{\prime\prime}$	T-depe	en [%/K]	pa-
species	index	cm^{-1}	cm/molec	%	Cont.	cm^{-1}	trop	strat	ge
O_3	31	3026.7651	3.96e-22	55.0	326.5	141.1	194	+.174	379
O_3	31	3026.8615	3.34e-22	50.2	298.0	156.9	194	+.174	379
O_3	31	3039.9866	1.31e-22	34.6	249.8	158.8	+.015	+.235	381
O_3	31	3040.1108	2.00e-22	42.3	305.2	30.2	+.015	+.235	381
O_3	31	3045.1987	7.37e-23	16.0	155.3	340.7	020	+.357	383
O_3	31	3045.2951	6.96e-23	17.6	170.8	20.9	020	+.357	383
O_3	31	3161.4977	1.67e-23	2.6	33.5	260.4	162	228	389
O_3	32	1002.6060	4.04e-23	14.7	46.2	328.4	+.201	+.318	127
O_3	32	1043.4404	5.96e-23	16.1	46.9	230.4	302	101	131
O_3	32	1044.0128	4.60e-23	9.6	26.3	288.1	+.280	+1.01	133
O_3	32	1090.3638	1.76e-24	5.5	57.7	32.6	+.046	+.436	135
O_3	33	975.2838	2.30e-23	4.5	23.9	495.4	123	907	95
O_3	33	976.7864	2.84e-23	6.2	21.5	446.8	218	728	97
O_3	33	977.9250	3.10e-23	6.3	32.1	421.4	107	566	99
O_3	33	979.4801	3.80e-23	9.7	49.1	374.9	212	548	101
O_3	33	980.6024	4.12e-23	10.2	47.6	351.1	131	467	103
O_3	33	981.7107	4.46e-23	12.2	52.6	328.0	145	340	105
O_3	33	983.0755	4.46e-23	11.8	56.1	311.6	191	304	107
O_3	33	984.1683	4.54e-23	12.6	49.9	298.3	061	048	109
O_3	33	984.9790	5.48e-23	14.3	57.7	263.6	060	251	111
O_3	33	986.2977	5.10e-23	15.3	55.5	257.2	159	295	113
O_3	33	987.1014	6.10e-23	19.9	68.1	224.5	102	218	115
O_3	33	988.3912	5.58e-23	16.1	60.9	219.5	024	094	117
O_3	33	989.1177	5.14e-23	15.4	52.3	222.0	139	009	119
O_3	33	990.4487	5.94e-23	19.7	62.3	185.1	241	+.079	121
O_3	33	991.2137	7.04e-23	22.0	76.6	155.8	+.014	+.261	123
O_3	33	992.1759	7.22e-23	17.3	103.1	140.0	056	+.155	125
O_3	33	992.1764	5.44e-23	17.3	103.1	174.1	056	+.155	125
O_3	33	993.7910	4.56e-23	15.1	38.3	172.2	051	+.190	127
OCS	191	2045.5785	7.06e-19	10.4	67.2	285.1	531	030	193
OCS	191	2051.3313	1.01e-18	23.3	180.4	131.8	+.032	016	195
OCS	191	2053.1714	1.02e-18	18.6	71.9	93.7	+.005	154	197
OCS	191	2054.0778	1.00e-18	22.2	92.5	77.1	192	209	199
OCS	191	2054.5271	9.84e-19	26.6	110.7	69.4	192	209	199
OCS	191	2055.8606	9.08e-19	22.5	126.6	48.7	-1.31	524	201
SF_6	500	$947.9300^{*)}$	3.15e-19	1.5	9.1	241.0	+.542	+.178	83
SO_2	91	1156.9140 ^{*)}	3.40e-21	1.1	6.4	29.2	+5.55	+2.98	141
SO_2	91	$1157.8785^{*)}$	2.12e-21	1.1	2.5	29.2	+5.55	+2.98	141

2.3 The numerical encoding of molecules in spectroscopic linelists

Table 2.3: This table gives an overview over all species known to the HITRAN2000 and ATMOS spectroscopic data bases. The first column gives the chemical name, the next two columns give the numerical encoding of that species in ATMOS and HITRAN2000 notation, respectively, splitted by its isotopic composition. The isotopic compositions listed in the fourth column denote the atomic masses of the atoms by their last digit (${}^{12}C = 2$, ${}^{13}C = 3$, etc). The last column gives the natural isotopic abundances assumed in the data bases as quoted from HITRAN2000. The molecular masses of molecules not contained in HITRAN are taken from the FSCATM software (2003 edition) (Gallery et al., 1983, Goldman et al., 1999, Meier et al., 2003 & 2004) and are identical with the molecular masses used in SFIT2 V3.81. For more details see Rothman et al., (1998 and 2003) and http://www.hitran.com.

Molecular indices of ATMOS and HITRAN agree for molecules 1 to 21, but differ for other molecules. In the cases of heavy water vapour, heavy methane and heavy ozone, ATMOS and SFIT allow two different notations. The alternative identifier is given in brackets. The larger of any set of two identifiers for the same isotopomer makes SFIT to treat that isotopomer as an independent species that can be retrieved independently of all remaining isotopomers of that molecule. Note also that some recently added isotopomers and molecules may not be supported by older versions of SFIT.

Species	3-digit I	ndentifie	er Codes	Isotopic	Molecular
	ATMOS	HITRAN	Isotopes	Abundances	Mass m_r
H_2O	11	11	161	.997317E-00	18.010565
	12 (511)	12	181	1.99983E-03	20.014811
	13 (512)	13	171	3.71884E-04	19.014780
	491 (14)	14	162	3.10693E-04	19.016740
	492 (15)	15	182	6.23003E-07	21.020985
	493 (16)	16	172	1.15853E-07	20.020956
CO_2	21	21	626	.984204E+00	43.989830
	22	22	636	1.10574E-02	44.993185
	23	23	628	3.94707E-03	45.994076
	24	24	627	7.33989E-04	44.994045
	25	25	638	4.43446E-05	46.997431
	26	26	637	8.24623E-06	45.997400
	27	27	828	3.95734E-06	47.998322
	28	28	728	1.47180E-06	46.998291
O_3	31	31	666	.992901E+00	47.984745
	32 (541)	32	668	3.98194E-03	49.988991
	33 (551)	33	686	1.99097E-03	49.988991
	34 (561)	34	667	7.40475E-04	48.988960
	35 (571)	35	676	3.70237E-04	48.988960

Species	3-digit I	indentifier Codes		Isotopic	Molecular
	ATMOS	HITRAN	Isotopes	Abundances	Mass m_r
N_2O	41	41	446	.990333E+00	44.001062
	42	42	456	3.64093E-03	44.998096
	43	43	546	3.64093E-03	44.998096
	44	44	448	1.98582E-03	46.005308
	45	45	447	3.69280E-04	45.005278
CO	51	51	26	.986544E+00	27.994915
	52	52	36	1.10836E-02	28.998270
	53	53	28	1.97822E-03	29.999161
	54	54	27	3.67867E-04	28.999130
	55	55	38	2.22250E-05	31.002516
	56	56	37	4.13292E-06	30.002485
CH_4	61	61	211	.988274E+00	16.031300
	62	62	311	1.11031E-02	17.034655
	63 (531)	63	212	6.15751E-04	17.037475
O_2	71	71	66	.995262E+00	31.989830
	72	72	68	3.99141E-03	33.994076
	73	73	67	7.42235E-04	32.994045
NO	81	81	46	.993974E+00	29.997989
	82	82	56	3.65431E-03	30.995023
	83	83	48	1.99312E-03	32.002234
SO_2	91	91	626	.945678E+00	63.961901
	92	92	646	4.19503E-02	65.957695
NO_2	101	101	646	.991616E+00	45.992904
NH_3	111	111	4111	.995872E+00	17.026549
	112	112	5111	3.66129E-03	18.023583
HNO_3	121	121	146	.989110E+00	62.995644
OH	131	131	61	.997473E+00	17.002740
	132	132	81	2.00014E-03	19.006986
	133	133	62	1.55371E-04	18.008915
HF'	141	141	19	.999844E+00	20.006229
HCl	151	151	15	.757587E+00	35.976678
IID	152	152	17	.242257E+00	37.973729
HBr	161	161	19	.506781E+00	79.926160
77.7	162	162	11	.493063E+00	81.924115
HI	171	171	17	.999844E+00	127.912297
ClO	181	181	56	.755908E+00	50.963768
000	182	182	76	.241720E+00	52.960819
OCS	191	191	622	.937395E+00	59.966986
	192	192	624	4.15828E-02	61.962780
	193	193	632	1.05315E-02	60.970341
	194	194	623	1.39908E-03	60.9663/1
	195	195	822	1.87967E-03	61.971231

Species	3-digit	it Indentifier Codes		Isotpoic	Molecular
	ATMOS	HITRAN	Isotopes	Abundances	Mass m_r
H_2CO	201	201	126	.986237E+00	30.010565
	202	202	136	1.10802E-02	31.013920
	203	203	128	1.97761E-03	32.014811
HOCl	211	211	165	.755790E+00	51.971593
	212	212	167	.241683E+00	53.968644
HO_2	221	331	166	.995107E+00	32.997655
H_2O_2	231	251	1661	.994952E+00	34.005480
HONO	241		1646		47.0
HO_2NO_2	251				79.0
N_2O_5	261				108.0
$ClONO_2$	271	351	5646	.749570E+00	96.956672
	272	352	7646	.239694E+00	98.953723
HCN	281	231	124	.985114E+00	27.010899
	282	232	134	1.10676E-02	28.014254
	283	233	125	3.62174E-03	28.007933
CH_3F (CFC-41)	291				34.0331
CH_3Cl	301	241	215	.748937E+00	49.992328
	302	242	217	.239491E+00	51.989379
CF_4 (CFC-14)	311				88.0046
CCl_2F_2 (CFC-12)	321				121.0
CCl_3F (CFC-11)	331				136.0
CH_3CCl_3	341				133.4047
CCl_4	351				153.823
COF_2	361	291	269	.986544E+00	65.991722
COClF	371				82.4618
C_2H_6	381	271	1221	.976990E+00	30.046950
C_2H_4	391	381	221	.977294E+00	28.031300
	392	382	231	2.19595E-02	29.034655
C_2H_2	401	261	1221	.977599E+00	26.015650
	402	262	1231	2.19663E-02	27.019005
N_2	411	221	44	.992687E+00	28.006147
CHF_2Cl (CFC-22)	421				86.0
$COCl_2$	431				98.0
$COCl_2$	432				102.0
CH_3Br	441				95.0
CH_3I	451				142.0
НСООН	461	321	126	.983898E+00	46.005480
H_2S	471	311	121	.949884E+00	33.987721
	472	312	141	4.21369E-02	35.983515
	473	313	131	7.49766E-03	34.987105
$CHCl_2F$ (CFC-21)	481				44.0

Species	3-digit I	ndentifie	er Codes	Isotopic	Molecular
	ATMOS	HITRAN	Isotopes	Abundances	Mass m_r
HDO	491 (14)	14	162	3.10693E-04	19.016740
	492 (15)	15	182	6.23003E-07	21.020985
	493 (16)	16	172	1.15853E-07	20.020956
SF_6	501	301	29	.950180E+00	145.962492
$H_2^{\ 18}O$	511 (12)	12	181	1.99983E-03	20.014811
$H_2^{17}O$	521 (13)	13	171	3.71884E-04	19.014780
CH_3D	531 (63)	63	212	6.15751E-04	17.037475
$^{16}O^{16}O^{18}O$	541 (32)	32	668	3.98194E-03	49.988991
$^{16}O^{18}O^{16}O$	551 (33)	33	686	1.99097E-03	49.988991
$^{16}O^{16}O^{17}O$	561 (34)	34	667	7.40475E-04	48.988960
$^{16}O^{17}O^{16}O$	571 (35)	35	676	3.70237E-04	48.988960
OClO	581				67.46
$F134A \ (C_2H_2F_4)$	591				83.033
C_3H_8	601				44.0962
F142B $(C_2H_3ClF_2)$	611				100.4955
$CFC113 \ (C_2Cl_3F_3)$	621				187.3762
$F141B \ (C_2H_3Cl_2F)$	631				116.9501
$BrNO_2$	641		9466	0.505579	125.0
	642		1466	0.491894	127.0
PH_3		281	1111	.999533E+00	33.997238
0		341	6	.997628E+00	15.994915
NO ⁺		361	46	.993974E+00	29.997989
HOBr		371	169	.505579E+00	95.921076
		372	161	.491894E+00	97.919027

In the spectral simulation program Sim109g-atlas used in the creation of this atlas, there is additional tentative support for the following species. Please note that the molecule index listed is not an official one but specific to this software and version.

Species	3-digit Indentifier Codes			Isotopic	Molecular
	sim109g	HITRAN	Isotopes	Abundance	Mass m_r
CH_3OH	651				32.042
<i>CO</i> 36	661(52)	52	36	1.10836E-2	28.99827
CH ₃ COOH	671				60.0524
ACETONE (CH_3COCH_3)	681				58.0798
PAN $(C_2H_3NO_5)$	691				121.05

3 Main part: The illustrated microwindow atlas

On the following pages more than twohundred and fourty so-called *microwindows* are discussed in detail. Each microwindow is discussed over 2 pages. On the left side you find a page-filling illustration that we call the *contribution plot*. It shows an interval from a ground-based FTIR spectrum recorded at Kiruna at a solar zenith angle of 70° labelled **'observed'**, a simulated spectrum matching the conditions of the observed spectrum that is the sum of all known molecular absorptions plus simulated solar interferences (labelled **'AllMol'**), and the simulations of each known absorber individually (the label is the name of the corresponding molecule). The spectra are shifted vertically so they can be destinguished. Simulated absorptions from individual molecules are plotted only if the maximum absorption in the interval shown exceeds 0.05%. Weaker species are included in the right-hand side table (discussed below) but not in the figure.

Molecules occur in a mixture of isotopic forms, also known as *isotopomers*. Any rare isotopomer is shown as a seperate species if its maximum absorption strength exceeds 0.5% in total absorption strength in the interval shown. Rare isotopomers are identified by the isotopic specifier '(i#)' after the molecule name, where # indicates the isotopic index as defined in Table 2.3 (page 19). Isotopic forms not shown separately are included in the simulation for the bulk isotopic form.

Solar interferences are illustrated through both "observed"² and simulated spectra. The "observed" solar spectrum is labelled 'Solar(A,D,G, or N)', indicating the <u>A</u>TMOS, <u>D</u>enver, <u>G</u>GG Mark IV, or the <u>N</u>OAO Kitt Peak data set, respectively. The *simulated* solar spectrum labelled "solar-sim" is based on Arndt Meier's compilation³. In some illustrations solar simulations from the Denver University OH linelist ('solar-DU') are provided as well to highlight some of the differences. Unfortunately, we did not manage to include the new solar simulations from Frank Hase into the contribution plots in time, but we encourage readers to study Appendix C and the electronic copy of the simulated solar spectrum on the DVD. Note that the ATMOS spectra were recorded at a 5 times lower spectral resolution than all other data discussed, resulting in notably broader lineshapes.

On the right hand side an illustrated retrieval example is presented. The title above the residuals plot provides

- $-\,\sigma$ the total standard deviation of the residuals achieved in the example fit,
- -970315s6.92 (or similar) the name of the recorded spectrum,
- $-\varphi$ the astronomical solar zenith angle in degrees,
- FoV the field of view (aperture diameter divided by the focal length) in mrad, and
- the **apodisation** function used in the Fourier Transform (typ. boxcar).

The table below the example fit specifies the target molecule and spectroscopic key parameters from the transition(s) of interest. The line position is marked with an asterisk '*)', if several significant and overlapping absorptions lines of the target molecule make up one absorption feature. In that case, the spectrocopic details given represent the parameters for the strongest line occuring in the region of interest.

The total column amount (TCA) obtained with the best known temperature profile is reported in absolute numbers. The number listed as *'information content'* is simply the ratio of the relative absorption depth of the target line (minus shoulder effects from any interfering absorptions) divided by the total rms of the residuals achieved in our example fit⁴. The larger

 $^{^{2}}$ This is not strictly true for all intervals as some gaps in the available material of solar spectra had to be filled with simulated data. For more details see section 2 and Appendix C.5.

³For more details see section 2 and Appendix C.5.

⁴these numbers are only rough guides and vary considerably with observation conditions.

the information content, the smaller the statistical retrieval errors are.

In order to obtain a realistic estimate of the temperature sensitivity of any particular retrieval, we prepared 3 temperature profiles: one that is to our knowledge the most accurate one, one that is 2 Kelvin warmer in the troposphere (all layers from 0 to 12km), and one that is warmer in the stratosphere and beyond (all layers from 12 to 100km). TCAs obtained using one of the alternative temperature profiles are reported in terms of relative differences from the corresponding TCAs obtained with the best known temperature profile. However, the differences found were divided by a factor of 2 such that the temperature sensitivities reported represent the effect of a 1 Kelvin (and not 2 Kelvin) perturbation. This provides a handy–to–use temperature sensitivity of the retrieved TCA per Kelvin temperature uncertainty in either the troposphere or stratosphere. A temperature sensitivity for any one transition can also be calculated directly from the corresponding lower state energy without the need for the more labourous perturbation calculations. However, the perturbation takes also into acount the effects from interfering absorptions and is thus of higher practical use.

Microwindows that contain interesting absorptions suitable for the retrieval of more than one molecule give details for the second most interesting molecule in round brackets after the correspondig data for the molecule of primary interest. A line position or lower state energy or temperature dependence (etc.) printed in brackets, corresponds to the molecule in brackets at the top of the table.

All molecules for which spectroscopic data is available in the interval discussed are listed in the bottom half of the table. Molecules are listed with their ATMOS molecular plus isotopic index⁵ in the order of descending maximum absorption strength as simulated for the 70° SZA Kiruna spectrum. Beware that the observed absorption depths vary considerably with atmospheric conditions and site location and are valid for this particular scenario from Kiruna only. However, the absorption strengths listed in percent may be useful for relative comparisons between different microwindows. Appendix A may also assist in estimating conditions at other popular FTIR observation sites.

⁵That is the molecular index used in the cfgl-type linelist or as used by the SFIT algorithms - see Table 2.3, page 19, for more details.

This page is intentionally blank.

 C_2H_2 , Kiruna, $\varphi=71.68^{\circ}$, OPD=257cm, FoV=4.06mrad, boxcar apod.

Wavenumber ν in cm^{-1}

Wavenumber ν in cm^{-1}

investigated species line position(s) ν_0 lower state energy E''_{lst} retrieved TCA, information content temperature dependence of the TCA location, date, solar zenith angle spectral interval fitted			: : : :	C_2H_2 766.7241 cr 282.3 cm ⁻¹ 7.65E+15 r -0.874%/K Kiruna, 15 766.550 - 7	n^{-1} nolec/cm ² , 1 (trop), +0.02 /Mar/1997, 66.930 cm ⁻	4.3 22%/K (strat) 71.68^{o}
Molecule	iCode	Absorption		Molecule	iCode	Absorption
CO2	21	80.953%		COF2	361	0.069%
O3	31	79.328%		C2H6	381	0.016%
C2H2	401	4.757%		HCN	281	0.010%
H2O	11	2.836%		CH3Cl	301	0.008%
CO2	2 2	1.181%		NH3	111	0.004%
CCl4	351	0.292%		N2O5	261	0.001%
HNO3	121	0.171%		C2H4	391	0.001%
NO2	101	0.147%		HDO	491	0.001%
ClONO2	271	0.134%		OH	131	$<\!0.001\%$
$\operatorname{Solar}(A)$		0.100%		ClO	182	< 0.001%
Solar-sim		< 0.001%		HO2	221	< 0.001%

 O_3 , Kiruna, $\varphi = 71.68^{\circ}$, OPD=257cm, FoV=4.06mrad, boxcar apod.

Wavenumber ν in cm^{-1}

Wavenumber ν in cm^{-1}

investigated line position lower state e retrieved TC temperature	species (s) ν_0 energy E''_{lst} CA, informa dependenc	tion content e of the TCA	: O_3 : 773.2868, 77 : 290.3, 343.4 : 9.53E+15 m :213%/K (t)	O_3 773.2868, 773.3117 cm ⁻¹ 290.3, 343.4 cm ⁻¹ 9.53E+15 molec/cm ² , 253.6 213%/K (trop), -1.154%/K (strat)		
location, date, solar zenith angle			: Kiruna, 15/ : 773 175 – 77	Kiruna, 15/Mar/1997, 71.68° 772 175 $772 425 \text{ cm}^{-1}$		
Molecule iCode Absorption			Molecule	iCode	Absorption	
03	31	72.169%	NO2	101	0.173%	
CO2	21	27.304%	C2H6	381	0.034%	
CCl4	351	1.033%	NH3	111	0.001%	
C2H2	401	1.001%	N2O5	261	0.001%	
CO2	2 2	0.815%	C2H4	391	0.001%	
HNO3	121	0.520%	HDO	491	0.001%	
H2O	11	0.464%	OH	131	< 0.001%	
ClONO2	271	0.370%	ClO	181	< 0.001%	
$\operatorname{Solar}(A)$		0.358%	HO2	221	< 0.001%	
Solar-sim		0.196%	CH3Cl	301	< 0.001%	
COF2	361	0.285%	CHF2Cl	421	< 0.001%	
HCN	281	0.267%	BrNO2	641	< 0.001%	

 O_3 , Kiruna, $\varphi = 71.68^{\circ}$, OPD=257cm, FoV=4.06mrad, boxcar apod.

Wavenumber ν in cm^{-1}

Wavenumber ν in cm^{-1}

investigated species			$: O_3$			
line position(s) ν_0			: 774.8417, 77	774.8417, 774.8853 cm^{-1}		
lower state e	energy E_{let}''		: 376.2, 307.9	$376.2, 307.9 \ cm^{-1}$		
retrieved TC	CA. information	tion content	: 1.09E + 19 m	$1.09E+19 molec/cm^2$, 272.3		
temperature	dependenc	e of the TCA	:184%/K (tr	-184%/K (trop) $-872%/K$ (strat)		
location. dat	e. solar zer	ith angle	: Kiruna, 15/	Kiruna $15/Mar/97$ 71 68°		
spectral interval fitted			: 774.720 - 77	$774.720 - 774.965 \ cm^{-1}$		
Molecule	iCode	Absorption	Molecule	iCode	Absorption	
O3	31	68.526%	COF2	361	0.025%	
CO2	21	11.210%	BrNO2	641	0.008%	
H2O	11	10.220%	HCN	281	0.002%	
CO2	2 2	1.184%	NH3	111	0.001%	
HNO3	121	0.682%	N2O5	261	0.001%	
CCl4	351	0.326%	C2H4	391	0.001%	
ClONO2	271	0.324%	OH	131	< 0.001%	
NO2	101	0.155%	ClO	181	< 0.001%	
$\operatorname{Solar}(A)$		0.120%	HO2	221	< 0.001%	
Solar-sim		0.001%	CH3Cl	301	< 0.001%	
Solar-DU		0.001%	CHF2Cl	421	< 0.001%	
C2H2	401	0.066%	HDO	491	< 0.001%	
C2H6	381	0.039%				

 $C_2H_2,$ Kiruna, $\varphi{=}71.68^o,$ OPD=257cm, FoV=4.06mrad, boxcar apod.

Wavenumber ν in cm^{-1}

Wavenumber ν in cm^{-1}

investigated species line position(s) ν_0 lower state energy E''_{lst} retrieved TCA, information content temperature dependence of the TCA location, date, solar zenith angle spectral interval fitted				C_2H_2 776.0810 cm 446.9 cm ⁻¹ 7.90E+15 m 773%/K (t Kiruna, 15/ 775.880 - 77	n^{-1} n^{-	$\begin{array}{c} .0 \\ 6/\mathrm{K} \ \mathrm{(strat)} \\68^{o} \end{array}$
Molecule	iCode	Absorption		Molecule	iCode	Absorption
<i>O</i> 3	31	65.821%		BrNO2	641	0.035%
CO2	21	58.307%		CHF2Cl	421	0.020%
H2O	11	15.981%		NH3	111	0.017%
C2H2	401	2.349%		COF2	361	0.016%
HNO3	121	0.586%		HCN	281	0.013%
CCl4	351	0.365%		C2H4	391	0.001%
ClONO2	271	0.348%		OH	131	< 0.001%
NO2	101	0.149%		ClO	181	< 0.001%
$\operatorname{Solar}(A)$		0.090%		HO2	221	< 0.001%
Solar-sim		0.001%		N2O5	261	< 0.001%
Solar-DU		0.001%		HDO	491	< 0.001%
C2H6	381	0.043%				

 $ClNO_3$, Kiruna, $\varphi = 71.68^{\circ}$, OPD=257cm, FoV=4.06mrad, boxcar apod.

Wavenumber ν in cm^{-1}

Wavenumber ν in cm^{-1}

investigated species line position(s) ν_0 lower state energy E''_{lst} retrieved TCA, information content temperature dependence of the TCA location, date, solar zenith angle spectral interval fitted			: $ClONO_2$: 780.2200^{*} (: $164.2 \ cm^{-1}$: $4.10E+15 \ n$: $+.066\%/K$: Kiruna, $15/$: $780.050 - 78$	(pseudoline) $nolec/cm^2$, 14 (trop), +.435 'Mar/97, 71 80.355 cm^{-1}	cm^{-1} 4.3 %/K (strat) 68°	
Molecule	iCode	Absorption	Molecule iCode Absorp			
CO2	21	61.624%	NO2	101	0.091%	
O3	31	57.477%	COF2	361	0.077%	
H2O	11	8.157%	C2H6	381	0.055%	
$\operatorname{Solar}(A)$		2.680%	NH3	111	0.044%	
Solar-sim		3.452%	CHF2Cl	421	0.030%	
Solar-DU		1.985%	ClO	181	0.001%	
CLONO2	270	2.413%	C2H4	391	0.001%	
CO2	2 2	2.055%	OH	131	< 0.001%	
C2H2	401	1.602%	HO2	221	< 0.001%	
HNO3	121	0.717%	N2O5	261	< 0.001%	
CCl4	351	0.421%	HDO	491	< 0.001%	
HCN	281	0.123%	CFC113	621	< 0.001%	
BrNO2	641	0.123%				

 O_3 , Kiruna, $\varphi = 71.68^{\circ}$, OPD=257cm, FoV=4.06mrad, boxcar apod.

36

Wavenumber ν in cm^{-1}

investigated species line position(s) ν_0 lower state energy E''_{lst} retrieved TCA, information content temperature dependence of the TCA location, date, solar zenith angle spectral interval fitted			: O_3 : 781.1807 o : 357.5 cm ⁻ : 1.05E+19 :315%/K : Kiruna, 1 : 781.025 -	cm^{-1} -1 molec/cm ² , 1 (trop),521% 5/Mar/97, 7 781.267 cm ⁻	98.0 6/K (strat) 1.68^{o}	
Molecule	iCode	Absorption	Molecule iCode Absorpt			
O3	31	58.870%	COF2	361	0.088%	
CO2	21	17.871%	C2H6	381	0.049%	
$\operatorname{Solar}(A)$		2.897%	NH3	111	0.044%	
$\operatorname{Solar-sim}$		4.952%	CHF2Cl	421	0.034%	
Solar-DU		2.071%	HCN	281	0.003%	
CO2	2 2	2.152%	ClO	181	0.001%	
C2H2	401	1.602%	C2H4	391	0.001%	
HNO3	121	0.751%	OH	131	< 0.001%	
H2O	11	0.530%	HO2	221	< 0.001%	
CCl4	351	0.396%	N2O5	261	< 0.001%	
ClONO2	271	0.244%	HDO	491	< 0.001%	
BrNO2	641	0.165%	CFC113	621	< 0.001%	
NO2	101	0.091%				

 O_3 , Kiruna, $\varphi = 71.68^{\circ}$, OPD=257cm, FoV=4.06mrad, boxcar apod.

Wavenumber ν in cm^{-1}

Wavenumber ν in cm^{-1}

investigated species line position(s) ν_0 lower state energy E''_{lst} retrieved TCA, information content temperature dependence of the TCA location, date, solar zenith angle spectral interval fitted			: O_3 : 782.7720 cm : 376.8 cm ⁻¹ : 1.03E+19 m :150%/K (t : Kiruna, 15/ : 782.490 - 78	n^{-1} $colec/cm^2$, 18 rop),437% Mar/97, 71 $32.900 \ cm^{-1}$	86.8 /K (strat) 68 o	
Molecule	iCode	Absorption	Molecule iCode Absorpt			
O3	31	58.651%	NO2	101	0.096%	
CO2	21	9.942%	HCN	281	0.083%	
$\operatorname{Solar}(A)$		2.949%	C2H6	381	0.066%	
$\operatorname{Solar-sim}$		4.834%	CHF2Cl	421	0.045%	
Solar-DU		2.058%	NH3	111	0.001%	
H2O	11	2.296%	ClO	181	0.001%	
CO2	2 2	2.190%	OH	131	< 0.001%	
HNO3	121	0.737%	HO2	221	< 0.001%	
ClONO2	271	0.465%	N2O5	261	< 0.001%	
C2H2	401	0.428%	C2H4	391	< 0.001%	
CCl4	351	0.318%	HDO	491	< 0.001%	
BrNO2	641	0.134%	CFC113	621	< 0.001%	
COF2	361	0.097%				

 $BrNO_2$, Kiruna, $\varphi=71.68^{\circ}$, OPD=257cm, FoV=4.06mrad, boxcar apod.

Comment: Spectroscopic line data of $BrNO_2$ kindly provided by Johannes Orphal, University Pierre et Marie Curie, Paris, (email: johannes.orphal@ppm.u-psud.fr, not included on the DVD).

 H_2O , Kiruna, $\varphi = 71.68^{\circ}$, OPD=257cm, FoV=4.06mrad, boxcar apod.

Wavenumber ν in cm^{-1}

investigated species line position(s) ν_0 lower state energy E''_{lst} retrieved TCA, information content temperature dependence of the TCA location, date, solar zenith angle spectral interval fitted			: $H_2O(i2 = H_2)$: 787.6918 cm ⁻ : 1074.8 cm ⁻ : 6.44E+21 m : -2.009%/K : Kiruna, 15/ : 787.370 - 78	$H_2 {}^{18}O)_{n^{-1}}_{1}$ nolec/cm ² , 7 (trop), +.16 Mar/97, 7 87.930 cm ⁻¹	7.0 3%/K (strat) 1.68° 1
Molecule	iCode	Absorption	Molecule	iCode	Absorption
<i>O</i> 3	31	44.239%	COF2	361	0.088%
H2O	12	1.597%	C2H6	381	0.082%
CO2	21	1.340%	NO2	101	0.060%
CO2	2 2	0.739%	BrNO2	641	0.026%
HNO3	121	0.477%	NH3	111	0.024%
H2O	11	0.427%	HCN	281	0.003%
ClONO2	271	0.383%	C2H4	391	0.002%
C2H2	401	0.260%	CFC113	621	0.001%
CCl4	351	0.250%	OH	131	< 0.001%
CHF2Cl	421	0.115%	ClO	181	< 0.001%
$\operatorname{Solar}(A)$		0.090%	HO2	221	< 0.001%
Solar-sim		0.008%	HDO	491	< 0.001%
Solar-DU		0.008%			

 HO_2NO_2 , Kiruna, $\varphi=71.68^o$, OPD=257cm, FoV=4.06mrad, boxcar apod.

Wavenumber ν in cm^{-1}

Wavenumber ν in cm^{-1}

investigated species line position(s) ν_0 lower state energy E''_{lst} retrieved TCA, information content temperature dependence of the TCA location, date, solar zenith angle spectral interval fitted			: : : : : : : : : : : : : : : : : : : :	HO_2NO_2 802.5797*) o 171.3 cm ⁻¹ 3.28E+14 m -11.659%/K Kiruna, 15/ 802.110 - 80	cm^{-1} nolec/cm ² , 3 (trop), -11.3 (Mar/97, 72) 03.330 cm ⁻¹	.3 369%/K (strat) 1.68° 1
Molecule	iCode	Absorption		Molecule	iCode	Absorption
CO2	21	71.587%		COF2	361	0.017%
H2O	11	68.738%		ClO	181	0.007%
O3	31	21.533%		C2H2	401	0.007%
CCl4	351	0.660%		HCN	281	0.003%
HO2NO2	251	0.634%		CFC113	621	0.001%
CHF2Cl	421	0.505%		NH3	111	< 0.001%
ClONO2	271	0.445%		OH	131	< 0.001%
$\operatorname{Solar}(A)$	—	0.110%		HO2	221	< 0.001%
Solar-sim	—	0.002%		CCl3F	331	< 0.001%
Solar-DU	—	0.007%		C2H4	391	< 0.001%
C2H6	381	0.108%		HDO	491	< 0.001%
NO2	101	0.097%		BrNO2	641	< 0.001%
HNO3	121	0.047%				

 H_2O , Kiruna, $\varphi = 71.68^{\circ}$, OPD=257cm, FoV=4.06mrad, boxcar apod.

46

Wavenumber ν in cm^{-1}

investigated species line position(s) ν_0 lower state energy E''_{lst} retrieved TCA, information content temperature dependence of the TCA location, date, solar zenith angle spectral interval fitted			: H_2O : 825.1 : 586.5 : $5.55E$: 808 : Kiru: : 824.4	$627 \ cm^{-1}$ $5 \ cm^{-1}$ $\Sigma+21 \ m^{-1}$ $\%/K \ (m^{-1})$ m^{-1} m	n^{-1} nolec/cm ² , 1 trop), +.003 /Mar/97, 72 25.900 cm ⁻	35.6 %/K (strat) 1.68 ⁰ 1
Molecule	iCode	Absorption	Mole	cule	iCode	Absorption
H2O	11	35.296%	HDO)	491	0.009%
CO2	21	7.910%	NHS	}	111	0.008%
O3	31	5.286%	CFC	2113	621	0.005%
$\operatorname{Solar}(A)$		2.549%	HNG	23	121	0.004%
Solar-sim		4.511%	OCS	4	191	0.004%
Solar-DU		2.292%	COF	$^{-}2$	361	0.001%
C2H6	381	0.484%	C2H	4	391	0.001%
CHF2Cl	421	0.326%	C2H	$\overline{2}$	401	0.001%
NO2	101	0.163%	COC	Cl2	431	0.001%
CCl3F	331	0.153%	OH		131	< 0.001%
ClO	181	0.066%	N2O	5	261	< 0.001%
ClONO2	271	0.032%	HCI	V	281	< 0.001%

 $CFC{-}22,$ Kiruna, $\varphi{=}71.68^o,$ OPD=257cm, FoV=4.06mrad, boxcar apod.

Wavenumber ν in cm^{-1}

temperature dependence of the TCA	:	+.004%/K (trop), $006%/K$
location, date, solar zenith angle	:	Kiruna, $15/Mar/97$, 71.68°
spectral interval fitted	:	$828.800 - 829.280 \ cm^{-1}$

spectral mee	i vai nooda				
Molecule	iCode	Absorption	Molecule	iCode	Absorption
CO2	21	4.690%	OCS	191	0.010%
CHF2Cl	421	3.709%	NH3	111	0.009%
O3	31	3.682%	HNO3	121	0.008%
H2O	11	1.685%	COCl2	431	0.005%
$\operatorname{Solar}(A)$		0.950%	C2H4	391	0.001%
$\operatorname{Solar-sim}$		1.131%	C2H2	401	0.001%
Solar-DU		0.683%	CFC113	621	0.001%
CCl3F	331	0.289%	OH	131	< 0.001%
C2H6	381	0.191%	HCN	281	< 0.001%
ClO	181	0.074%	COF2	361	< 0.001%
NO2	101	0.054%	HDO	491	< 0.001%
ClONO2	271	0.033%			

ClO, Kiruna, $\varphi = 71.68^{\circ}$, OPD=257cm, FoV=4.06mrad, boxcar apod.

50

Wavenumber ν in cm^{-1}

investigated species line position(s) ν_0 lower state energy E''_{lst} retrieved TCA, information content temperature dependence of the TCA location, date, solar zenith angle spectral interval fitted			: ClO : $830.6077 cm^{-1}$: $72.5 cm^{-1}$: $<1.00E+14$: $N.A.\%/K$ (: Kiruna, 15 : $830.142 - 8$	m^{-1} 4 molec/cm ² , (trop), N.A.% /Mar/97, 71 330.926 cm ⁻¹	<0.5 /K (strat) .68°
Molecule	iCode	Absorption	Molecule	iCode	Absorption
<i>O</i> 3	31	3.078%	ClONO2	271	0.034%
C2H6	381	0.587%	OCS	191	0.016%
$\operatorname{Solar}(A)$		0.370%	HNO3	121	0.014%
Solar-sim	—	0.001%	COCl2	431	0.009%
CCl3F	331	0.367%	C2H4	391	0.001%
CO2	21	0.355%	CFC113	621	0.001%
H2O	11	0.163%	OH	131	$<\!0.001\%$
CHF2Cl	421	0.109%	HCN	281	$<\!0.001\%$
ClO	181	0.073%	COF2	361	$<\!0.001\%$
NO2	101	0.065%	C2H2	401	$<\!0.001\%$
NH3	111	0.056%	HDO	491	${<}0.001\%$

Comment: CIO is below the detection limit. Analysis further hampered by standing waves.

ClO, Kiruna, $\varphi{=}71.68^o,$ OPD=257cm, FoV=4.06mrad, boxcar apod.

Wavenumber ν in cm^{-1}

investigated species: ClO line position(s) ν_0 :833.29lower state energy E''_{lst} :47.7 ccretrieved TCA, information content:<1.001temperature dependence of the TCA:N.A.%location, date, solar zenith angle:Kirunaspectral interval fitted:833.05	$\begin{array}{l} 0.74 \ cm^{-1} \\ m^{-1} \\ \text{E+14 } molec/cm^2, <0.5 \\ 6/\text{K (trop)}, \text{N.A.\%/K (strat)} \\ \text{a, } 15/\text{Mar}/97, \ 71.68^o \\ 50 - 833.550 \ cm^{-1} \end{array}$
Molecule iCode Absorption Molecu	ule iCode Absorption
<i>O</i> 3 31 2.264% <i>H</i> 2 <i>O</i>	11 0.029%
CCl3F 331 0.649% COCl	431 0.029%
CO2 21 0.471% HNO	3 121 0.018%
C2H6 381 0.392% NH3	111 0.012%
CHF2Cl 421 $0.117%$ $C2H4$	a 391 0.001%
Solar(A) $-$ 0.100% <i>CFC</i> 1	113 621 0.001%
Solar-sim — 0.011% OH	131 < 0.001%
Solar-DU — 0.009% <i>HO</i> 2	221 < 0.001%
CLO 181 0.071% <i>HCN</i>	281 < 0.001%
NO2 101 0.067% COF2	2 361 <0.001%
OCS 191 $0.034%$ $C2H2$	2 401 <0.001%
ClONO2 271 0.031% HDO	491 < 0.001%

Comment: CIO is below the detection limit. Analysis further hampered by standing waves.

ClO, Kiruna, $\varphi = 71.68^{\circ}$, OPD=257cm, FoV=4.06mrad, boxcar apod.

Wavenumber ν in cm^{-1}

Wavenumber ν in cm^{-1}

investigated species line position(s) ν_0 lower state energy E''_{lst} retrieved TCA, information content temperature dependence of the TCA location, date, solar zenith angle spectral interval fitted			:::::::::::::::::::::::::::::::::::::::	ClO $834.6249 \ cm$ $37.2 \ cm^{-1}$ <1.00E+14 N.A.%/K (t Kiruna, 15/ 834.400 - 83	m^{-1} molec/cm ² , rop), N.A.% Mar/97, 71 34.892 cm ⁻¹	<0.5 /K (strat) .68°
Molecule	iCode	Absorption		Molecule	iCode	Absorption
03	31	2.086%		OCS	191	0.052%
CCl3F	331	0.899%		COCl2	431	0.043%
CO2	21	0.714%		ClONO2	271	0.029%
$\operatorname{Solar}(A)$	—	0.250%		HNO3	121	0.020%
Solar-sim		0.406%		HDO	491	0.009%
Solar-DU		0.174%		C2H4	391	0.002%
C2H6	381	0.159%		CFC113	621	0.001%
CHF2Cl	421	0.130%		OH	131	< 0.001%
NH3	111	0.127%		HO2	221	< 0.001%
H2O	11	0.118%		HCN	281	< 0.001%
NO2	101	0.067%		C2H2	401	< 0.001%
CLO	181	0.067%				

Comment: ClO is below the detection limit. Analysis further hampered by standing waves.

 H_2O , Kiruna, $\varphi = 71.68^{\circ}$, OPD=257cm, FoV=4.06mrad, boxcar apod.

Wavenumber ν in cm^{-1}

Wavenumber ν in cm^{-1}

investigated species line position(s) ν_0 lower state energy E''_{lst} retrieved TCA, information content temperature dependence of the TCA location, date, solar zenith angle spectral interval fitted			: : : : :	H_2O 841.9028 cm 552.9 cm ⁻¹ 4.80E+21 m 822%/K (t Kiruna, 15/ 841.455 - 84	n^{-1} nolec/cm ² , 38 rop),002% Mar/97, 71 42.450 cm ⁻¹	8.2 /K (strat) .68°
Molecule	iCode	Absorption		Molecule	iCode	Absorption
H2O	11	14.412%		NO2	101	0.055%
CCl3F	331	4.848%		ClONO2	271	0.035%
O3	31	1.118%		ClO	181	0.019%
$\operatorname{Solar}(A)$		0.770%		C2H4	391	0.003%
Solar-sim		0.703%		NH3	111	0.001%
Solar-DU		0.003%		CFC113	621	0.001%
CO2	21	0.598%		OH	131	< 0.001%
OCS	191	0.240%		HO2	221	< 0.001%
C2H6	381	0.221%		HCN	281	< 0.001%
COCl2	431	0.221%		CCl2F2	321	< 0.001%
HNO3	121	0.096%		C2H2	401	< 0.001%
CHF2Cl	421	0.087%		HDO	491	< 0.001%

 $CCl_3F(CFC-11)$, Kiruna, $\varphi=71.68^\circ$, OPD=257cm, FoV=4.06mrad, boxcar apod.

Wavenumber ν in cm^{-1}

investigated species line position(s) ν_0 lower state energy E''_{lst} retrieved TCA, information content temperature dependence of the TCA location, date, solar zenith angle spectral interval fitted			•••••••••••	CCl_3F (= CFC - 11) 846.050 ^{*)} , 846.960 ^{*)} , 848.900 ^{*)} , 850.020 ^{*)} cm ⁻¹ typ. 359.0 to 505.0 cm ⁻¹ 4.51E+15-01 molec/cm ² , 20.8 +1.007%/K (trop), +0.149%/K (strat) Kiruna, 15/Mar/97, 71.68° 833.300 - 860.700 cm ⁻¹			
Molecule	iCode	Absorption		Molecule	iCode	Absorption	
H2O	11	79.804%		NH3	111	0.363%	
CCl3F	331	9.470%		CHF2Cl	421	0.361%	
$\operatorname{Solar}(A)$		5.289%		CCl2F2	321	0.149%	
$\operatorname{Solar-sim}$		6.643%		ClO	181	0.096%	
HNO3	121	4.915%		NO2	101	0.073%	
O3	31	2.703%		ClONO2	271	0.037%	
CO2	21	1.741%		C2H4	391	0.022%	
COCl2	431	0.640%		HDO	491	0.007%	
C2H6	381	0.859%		C2H2	401	0.001%	
OCS	191	0.467%		CFC113	621	0.001%	
CH4, OH, HO2, N2O5, HCN, COF2				and $F142B$		$<\!0.001\%$	

Note: Analysis carried out with a custom-built SFIT2 version capable of simulating up to 65000 spectroscopic lines in a $30cm^{-1}$ wide interval.

 H_2O , Kiruna, $\varphi = 71.68^{\circ}$, OPD=257cm, FoV=4.06mrad, boxcar apod.

Wavenumber ν in cm^{-1}

Wavenumber ν in cm^{-1}

investigated species line position(s) ν_0 lower state energy E''_{lst} retrieved TCA, information content temperature dependence of the TCA location, date, solar zenith angle spectral interval fitted			: H_2O : $849.5795 \ cm^{-1}$: $1293.0 \ cm^{-1}$: $5.10E+21 \ m^{-1}$: $-2.257\%/K$ (: Kiruna, $15/$: $848.500 - 85$	e^{-1} $colec/cm^2, 22$ (trop),007% Mar/97, 71 $50.600 \ cm^{-1}$	13.5 %/K (strat) .68°
Molecule	iCode	Absorption	Molecule	iCode	Absorption
H2O	11	68.553%	CCl2F2	321	0.035%
CCl3F	331	9.470%	CHF2Cl	421	0.021%
COCl2	431	0.640%	ClONO2	271	0.015%
O3	31	0.597%	C2H4	391	0.008%
OCS	191	0.437%	NH3	111	0.003%
CO2	21	0.372%	CFC113	621	0.001%
HNO3	121	0.350%	CH4	6 3	< 0.001%
$\operatorname{Solar}(A)$		0.290%	OH	131	< 0.001%
Solar-sim		1.525%	HO2	221	< 0.001%
Solar-DU		0.133%	N2O5	261	< 0.001%
C2H6	381	0.152%	HCN	281	< 0.001%
ClO	181	0.049%	C2H2	401	< 0.001%
NO2	101	0.048%			

 $HNO_3,$ Kiruna, $\varphi{=}71.68^o,$ OPD=257cm, FoV=4.06mrad, boxcar apod.

Wavenumber ν in cm^{-1}

Wavenumber ν in cm^{-1}

investigated species line position(s) ν_0 lower state energy E''_{lst} retrieved TCA, information content temperature dependence of the TCA spectral interval fitted			: HNO_3 : $868.104, 868.$: $138.5, 130.3$: $2.67E+16 m$: $+.026\%/K$ (: $867.514 - 87$	524, 868.970 , 120.0, 110 $nolec/cm^2$, 33 (trop), $+.387$ 70.100 cm^{-1}	, 869.416 ^{*)} cm^{-1} .3 cm^{-1} 8.7 - 42.4 m /K~(strat)
Molecule	iCode	Absorption	Molecule	iCode	Absorption
HNO3	121	10.354%	CCl3F	331	0.045%
OCS	191	0.473%	NO2	101	0.033%
NH3	111	0.428%	C2H4	391	0.031%
CCl2F2	321	0.391%	ClONO2	271	0.022%
H2O	11	0.247%	COCl2	431	0.003%
CO2	21	0.134%	CFC113	621	0.001%
O3	31	0.085%	CH4	6 3	< 0.001%
$\operatorname{Solar}(A)$		0.072%	OH	131	< 0.001%
$\operatorname{Solar-sim}$		0.024%	HO2	221	< 0.001%
Solar-DU		0.024%	N2O5	261	< 0.001%
C2H6	381	0.054%	C2H2	401	< 0.001%
ClO	181	0.051%	F142B	611	< 0.001%
			•		

Beware of ammonia interferences (compare Figure B.10, page 556).

 $HNO_3,$ Kiruna, $\varphi{=}71.68^o,$ OPD=257cm, FoV=4.06mrad, boxcar apod.

Wavenumber ν in cm^{-1}

Wavenumber ν in cm^{-1}

investigated species line position(s) ν_0 lower state energy E''_{lst} retrieved TCA, information content temperature dependence of the TCA location, date, solar zenith angle spectral interval fitted			: HNO_3 : $872.937, 873.$: $46.0, 40.7, 3$: $2.65E+16 m$: $+.002\%/K$ (: Kiruna, $15/$: $872.300 - 87$	$367, 873.800, 5.1, 29.9 \ cm$ $colec/cm^2, 39, 537, 537, 537, 537, 537, 537, 537, 537$	$^{874.232^{*)}}_{n^{-1}} cm^{-1}$ 9.9 - 32.5 $\%/{ m K}$ (strat) .68°
Molecule	iCode	Absorption	Molecule	iCode	Absorption
HNO3	121	11.513%	NO2	101	0.030%
H2O	11	5.102%	ClO	181	0.029%
CCl2F2	321	0.909%	ClONO2	271	0.021%
OCS	191	0.362%	CCl3F	331	0.016%
CO2	21	0.252%	COCl2	431	0.001%
$\operatorname{Solar}(A)$		0.191%	CFC113	621	0.001%
Solar-sim		0.001%	N2O	41	< 0.001%
Solar-DU		0.001%	CH4	6 3	< 0.001%
NH3	111	0.190%	OH	131	< 0.001%
C2H4	391	0.071%	HO2	221	< 0.001%
O3	31	0.048%	C2H2	401	< 0.001%
C2H6	381	0.045%	F142B	611	< 0.001%

CFC-12, Kiruna, φ =71.68°, OPD=257cm, FoV=4.06mrad, boxcar apod.

Wavenumber ν in cm^{-1}

Wavenumber ν in cm^{-1}

investigated species line position(s) ν_0 lower state energy E''_{lst} retrieved TCA, information content temperature dependence of the TCA location, date, solar zenith angle spectral interval fitted			:::::::::::::::::::::::::::::::::::::::	$CCl_2F_2(Free (921.180^*)), ($ 492.0, 247.0, 9.51E+15 m +0.561%/K Kiruna, $15/2$ 920.270 - 92	(5000000000000000000000000000000000000	$\begin{array}{c} 23.060^{*)} \ cm^{-1} \\ 1 \\ 03.7 \\ 3\%/\mathrm{K} \ (\mathrm{strat}) \\ .68^{o} \end{array}$
Molecule	iCode	Absorption		Molecule	iCode	Absorption
H2O	11	39.513%		<i>O</i> 3	31	0.019%
CCL2F2	321	21.509%		F142B	611	0.008%
CO2	21	9.505%		NO2	101	0.003%
$\operatorname{Solar}(A)$	—	3.935%		CFC113	621	0.003%
Solar-sim	—	4.588%		ClONO2	271	0.001%
Solar-DU		4.588%		CH4	61	< 0.001%
CO2	2 2	2.236%		OH	131	$<\!0.001\%$
HNO3	121	0.594%		C2H6	381	$<\!0.001\%$
C2H4	391	0.497%		HDO	491	$<\!0.001\%$
NH3	111	0.149%		SF6	501	< 0.001%
N2O	41	0.059%				

 CO_2 , Kiruna, $\varphi = 71.68^o$, OPD=257cm, FoV=4.06mrad, boxcar apod.

Wavenumber ν in cm^{-1}

investigated species line position(s) ν_0 lower state energy E''_{lst} retrieved TCA, information content temperature dependence of the TCA location, date, solar zenith angle spectral interval fitted			: CO_2 : 927.0083 cm ⁻¹ : 1966.2 cm ⁻¹ : 7.09E+21 m : -3.757%/K (: Kiruna, 15/ : 926.725 - 92	e^{-1} $colec/cm^2$, 92 (trop), -1.100 Mar/97, 71 $27.247 \ cm^{-1}$	2.8 $0\%/{ m K}~{ m (strat)}$ 68°
Molecule	iCode	Absorption	Molecule	iCode	Absorption
CO2	21	17.792%	<i>O</i> 3	31	0.010%
CCl2F2	321	6.744%	HDO	491	0.008%
CO2	2 2	2.119%	NO2	101	0.004%
NH3	111	0.549%	CFC113	621	0.002%
$\operatorname{Solar}(A)$		0.221%	CH4	61	$<\!0.001\%$
Solar-sim		0.001%	OH	131	$<\!0.001\%$
Solar-DU		0.001%	H2O2	231	$<\!0.001\%$
C2H4	391	0.125%	ClONO2	271	< 0.001%
H2O	11	0.120%	COF2	361	< 0.001%
HNO3	121	0.108%	C2H6	381	< 0.001%
N2O	41	0.060%	F142B	611	< 0.001%
SF6	501	0.027%			

 NH_3 , Kiruna, $\varphi = 71.68^{\circ}$, OPD=257cm, FoV=4.06mrad, boxcar apod.

Wavenumber ν in cm^{-1}

Wavenumber ν in cm^{-1}

investigated species line position(s) ν_0 lower state energy E''_{lst} retrieved TCA, information content temperature dependence of the TCA location, date, solar zenith angle spectral interval fitted			: NH_3 : 929.8981 cm : 140.2 cm ⁻¹ : 1.46E+14 m : +5.124\%/K : Kiruna, 15/ : 929.670 - 93	n^{-1} $colec/cm^2, 2$ (trop), +.61 Mar/97, 71 $30.150 \ cm^{-1}$	5 1%/K (strat) 68°
Molecule	iCode	Absorption	Molecule	iCode	Absorption
CCl2F2	321	7.295%	<i>O</i> 3	31	0.011%
CO2	21	3.239%	NO2	101	0.004%
CO2	2 2	1.758%	CFC113	621	0.001%
NH3	111	0.531%	CH4	61	< 0.001%
H2O	11	0.232%	OH	131	< 0.001%
SF6	501	0.119%	H2O2	231	$<\!0.001\%$
C2H4	391	0.118%	ClONO2	271	< 0.001%
HNO3	121	0.088%	COF2	361	< 0.001%
$\operatorname{Solar}(A)$		0.070%	C2H6	381	< 0.001%
Solar-sim		$<\!0.001\%$	HDO	491	$<\!0.001\%$
Solar-DU		< 0.001%	F142B	611	< 0.001%
N2O	41	0.054%			

 CO_2 , Kiruna, $\varphi = 71.68^{\circ}$, OPD=257cm, FoV=4.06mrad, boxcar apod.

72

Wavenumber ν in cm^{-1}

investigated species line position(s) ν_0 lower state energy E''_{lst} retrieved TCA, information content temperature dependence of the TCA location, date, solar zenith angle spectral interval fitted			:::::::::::::::::::::::::::::::::::::::	CO_2 932.9604 cm 1800.1 cm ⁻ 7.18E+21 n -3.834%/K Kiruna, 15/ 932.662 - 93	n^{-1}_{1} nolec/cm ² , 1 (trop), -1.03 (Mar/97, 72) 33.485 cm ⁻¹	89.8 3%/K (strat) 1.68° 1
Molecule	iCode	Absorption		Molecule	iCode	Absorption
CO2	21	36.452%		SF6	501	0.030%
CCl2F2	321	4.469%		O3	31	0.027%
CO2	2 2	1.287%		NO2	101	0.003%
NH3	111	0.306%		COF2	361	0.002%
H2O	11	0.226%		HDO	491	0.001%
C2H4	391	0.091%		CFC113	621	0.001%
HNO3	121	0.056%		CH4	61	< 0.001%
$\operatorname{Solar}(A)$		0.051%		OH	131	$<\!0.001\%$
Solar-sim		0.001%		H2O2	231	$<\!0.001\%$
Solar-DU		0.001%		C2H6	381	< 0.001%
N2O	41	0.044%		F142B	611	$<\!0.001\%$

 CO_2 , Kiruna, $\varphi = 71.68^o$, OPD=257cm, FoV=4.06mrad, boxcar apod.

Wavenumber ν in cm^{-1}

Wavenumber ν in cm^{-1}

investigated species line position(s) ν_0 lower state energy E''_{lst} retrieved TCA, information content temperature dependence of the TCA location, date, solar zenith angle spectral interval fitted			:::::::::::::::::::::::::::::::::::::::	CO ₂ 934.8945 cm 1751.0 cm 7.18E+21 n -3.785%/K Kiruna, 15/ 934.250 - 9	n^{-1}_{1} nolec/cm ² , 2 (trop),976 /Mar/97, 7 35.700 cm ⁻	23.3 $\%/{ m K}~{ m (strat)}$ 1.68^{o}
Molecule	iCode	Absorption		Molecule	iCode	Absorption
CO2	21	43.683%		SF6	501	0.018%
CCl2F2	321	2.303%		NO2	101	0.003%
$\operatorname{Solar}(A)$		1.388%		COF2	361	0.003%
Solar-sim		1.116%		CFC113	621	0.001%
Solar-DU		1.116%		CH4	61	$<\!0.001\%$
CO2	2 2	0.853%		OH	131	$<\!0.001\%$
NH3	111	0.110%		H2O2	231	$<\!0.001\%$
H2O	11	0.103%		N2O5	261	$<\!0.001\%$
C2H4	391	0.081%		C2H6	381	$<\!0.001\%$
O3	31	0.042%		HDO	491	$<\!0.001\%$
HNO3	121	0.034%		F142B	611	< 0.001%
N2O	41	0.029%				

 CO_2 , Kiruna, $\varphi = 71.68^o$, OPD=257cm, FoV=4.06mrad, boxcar apod.

Wavenumber ν in cm^{-1}

Wavenumber ν in cm^{-1}

investigated species line position(s) ν_0 lower state energy E''_{lst} retrieved TCA, information content temperature dependence of the TCA location, date, solar zenith angle spectral interval fitted			:::::::::::::::::::::::::::::::::::::::	CO_2 936.8038 cm 1704.9 cm 7.31E+21 m -3.710%/K Kiruna, 15/ 936.478 - 9	n^{-1}_{1} nolec/cm ² , 2 (trop),928 /Mar/97, 7 37.178 cm ⁻	$ m ^{84.1}_{ m \%/K~(strat)}$ $ m ^{1.68^o}_{ m 1}$
Molecule	iCode	Absorption		Molecule	iCode	Absorption
CO2	21	50.336%		N2O	41	0.017%
CCl2F2	321	0.996%		COF2	361	0.011%
H2O	11	0.733%		NO2	101	0.002%
CO2	2 2	0.676%		CFC113	621	0.001%
$\operatorname{Solar}(A)$		0.111%		CH4	61	$<\!0.001\%$
Solar-sim		0.003%		OH	131	$<\!0.001\%$
Solar-DU		0.003%		H2O2	231	< 0.001%
C2H4	391	0.086%		N2O5	261	< 0.001%
NH3	111	0.049%		C2H6	381	< 0.001%
O3	31	0.045%		HDO	491	< 0.001%
HNO3	121	0.031%		F142B	611	< 0.001%
SF6	501	0.020%				

 CO_2 , Kiruna, $\varphi = 71.68^{\circ}$, OPD=257cm, FoV=4.06mrad, boxcar apod.

Wavenumber ν in cm^{-1}

Wavenumber ν in cm^{-1}

investigated species line position(s) ν_0 lower state energy E''_{lst} retrieved TCA, information content temperature dependence of the TCA location, date, solar zenith angle spectral interval fitted			:::::::::::::::::::::::::::::::::::::::	CO_2 938.6882 cm 1662.0 cm 7.30E+21 m -3.585%/K Kiruna, 15/ 938.250 - 9	n^{-1} $nolec/cm^2$, 2 (trop),928 /Mar/97, 73 39.300 cm ⁻	71.4 %/K (strat) 1.68^{o}
Molecule	iCode	Absorption		Molecule	iCode	Absorption
CO2	21	56.721%		N2O	41	0.006%
$\operatorname{Solar}(A)$		0.344%		NH3	111	0.006%
Solar-sim		0.178%		NO2	101	0.002%
Solar-DU		0.178%		HDO	491	0.001%
CCl2F2	321	0.327%		CFC113	621	0.001%
H2O	11	0.155%		CH4	61	< 0.001%
C2H4	391	0.151%		OH	131	$<\!0.001\%$
SF6	501	0.049%		H2O2	231	$<\!0.001\%$
O3	31	0.039%		N2O5	261	$<\!0.001\%$
HNO3	121	0.022%		C2H6	381	$<\!0.001\%$
COF2	361	0.013%		F142B	611	< 0.001%

 CO_2 , Kiruna, $\varphi = 71.68^{\circ}$, OPD=257cm, FoV=4.06mrad, boxcar apod.

Wavenumber ν in cm^{-1}

Wavenumber ν in cm^{-1}

investigated species
line position(s) ν_0
lower state energy E''_{lst}
retrieved TCA, information content
temperature dependence of the TCA
location, date, solar zenith angle
spectral interval fitted

 $CO_2, (C_2H_4)$ 942.3833, (941.8478) cm^{-1} 1585.6, (135.9) cm^{-1} 7.27E+21, (<1.0E+15) $molec/cm^2$, 390.9, (0.3) -3.466, (n.a.)%/K (trop), -.849, (n.a.)%/K (strat)

: Kiruna, 15/Mar/97, 71.68°

: $941.400 - 943.300 \ cm^{-1}$

Molecule	iCode	Absorption	Molecule	iCode	Absorption
CO2	21	67.854%	HDO	491	0.011%
$\operatorname{Solar}(A)$		3.717%	HNO3	121	0.008%
$\operatorname{Solar-sim}$		4.284%	NO2	101	0.001%
Solar-DU		4.284%	NH3	111	0.001%
SF6	501	0.335%	F142B	611	0.001%
C2H4	391	0.176%	CFC113	621	0.001%
H2O	11	0.170%	CH4	61	< 0.001%
CCl2F2	321	0.055%	OH	131	< 0.001%
O3	31	0.051%	H2O2	231	< 0.001%
N2O	41	0.029%	N2O5	261	< 0.001%
COF2	361	0.027%			

:

:

:

:

:

 SF_6 , Kiruna, $\varphi = 71.68^o$, OPD=257cm, FoV=4.06mrad, boxcar apod.

Wavenumber ν in cm^{-1}

investigated species				$SF_6, (H_2O)$					
line position(s) ν_0				947.9300, (9	947.9300, (948.2629) cm^{-1}				
lower state e	energy E_{lst}''		:	241.0, (1327	$(.1) \ cm^{-1}$				
retrieved TC	CA, informa	tion content	:	8.80E + 13 (1)	1.25E+15) mc	$plec/cm^2, 9.1, (0.3)$			
temperature	dependenc	e of the TCA	:	+.542 (-2.32	3)%/K (trop)), $+.178$ (007)%/K (strat)			
location, dat	e, solar zen	ith angle	:	Kiruna, 15/	Kiruna, 15/Mar/97, 71.68°				
spectral inte	rval fitted		:	946.850 - 9	$946.850 - 949.000 \ cm^{-1}$				
Molecule	iCode	Absorption		Molecule	iCode	Absorption			
CO2	21	76.183%		CCl2F2	321	0.025%			
H2O	11	54.180%		HNO3	121	0.004%			
$\mathbf{SF6}$	501	2.698%		F142B	611	0.003%			
$\operatorname{Solar}(A)$		1.081%		NO2	101	0.002%			
Solar-sim		1.533%		CFC113	621	0.001%			
Solar-DU		0.918%		CH4	61	< 0.001%			
C2H4	391	0.307%		OH	131	< 0.001%			
NH3	111	0.289%		H2O2	231	< 0.001%			
O3	31	0.138%		N2O5	261	< 0.001%			
COF2	361	0.070%		HDO	491	< 0.001%			
N2O	41	0.061%							

Comment: Standing wave artefacts add substantial systematic uncertainties to the TCAs reported.

Wavenumber ν in cm^{-1}

Wavenumber ν in cm^{-1}

investigated species line position(s) ν_0 lower state energy E''_{lst} retrieved TCA, information content temperature dependence of the TCA location, date, solar zenith angle spectral interval fitted			: : : :	C_2H_4 950.0562, 9 98.1, 64.7 c 8.34E+14 m +1.589%/K Kiruna, 15, 949.850 - 9	$50.6498 \ cm^{-1}$ m^{-1} $nolec/cm^2, 0$ (trop), +.20 /Mar/97, 72 $50.850 \ cm^{-1}$	$^{-1}$ 0.5, 0.8 03%/K (strat) 1.68° 1
Molecule	iCode	Absorption		Molecule	iCode	Absorption
CO2	21	16.483%		F142B	611	0.005%
$\operatorname{Solar}(A)$		1.091%		NH3	111	0.004%
$\operatorname{Solar-sim}$		1.649%		HNO3	121	0.002%
Solar-DU		0.947%		NO2	101	0.001%
C2H4	391	0.814%		CFC113	621	0.001%
SF6	501	0.645%		CH4	61	< 0.001%
O3	31	0.166%		OH	131	< 0.001%
H2O	11	0.165%		H2O2	231	< 0.001%
COF2	361	0.102%		N2O5	261	< 0.001%
N2O	41	0.065%		HDO	491	< 0.001%
CCl2F2	321	0.019%				

Comment: Standing wave artefacts add substantial systematic uncertainties to the TCAs reported.

 NH_3 , Kiruna, $\varphi = 71.68^{\circ}$, OPD=257cm, FoV=4.06mrad, boxcar apod.

Wavenumber ν in cm^{-1}

investigated species line position(s) ν_0 lower state energy E''_{lst} retrieved TCA, information content temperature dependence of the TCA location, date, solar zenith angle spectral interval fitted			:::::::::::::::::::::::::::::::::::::::	NH_3 951.7762 cm $0.8 \ cm^{-1}$ $3.86E+14 \ m$ +.750%/K (Kiruna, 15/ 951.500 - 95	e^{-1} $eolec/cm^2$, 0. (trop), +1.28 Mar/97, 71 $52.250 \ cm^{-1}$	4 3%/K (strat) .68°
Molecule	iCode	Absorption	I	Molecule	iCode	Absorption
CO2	21	22.389%		H2O	11	0.064%
C2H4	391	0.361%		F142B	611	0.007%
NH3	111	0.300%		NO2	101	0.001%
SF6	501	0.247%		HNO3	121	0.001%
O3	31	0.171%		CH4	61	< 0.001%
COF2	361	0.105%		OH	131	< 0.001%
$\operatorname{Solar}(A)$		0.101%		H2O2	231	< 0.001%
Solar-sim		0.002%		CCl2F2	321	< 0.001%
Solar-DU		0.002%		HCOOH	461	< 0.001%
N2O	41	0.066%		CFC113	621	${<}0.001\%$

 H_2O , Kiruna, $\varphi = 71.68^o$, OPD=257cm, FoV=4.06mrad, boxcar apod.

Wavenumber ν in cm^{-1}

Wavenumber ν in cm^{-1}

investigated species line position(s) ν_0 lower state energy E''_{lst} retrieved TCA, information content temperature dependence of the TCA location, date, solar zenith angle spectral interval fitted			$\begin{array}{llllllllllllllllllllllllllllllllllll$	$^{-1}$ $olec/cm^2$, 10 trop),003% Mar/97, 71 $3.850 \ cm^{-1}$	08.0 %/K (strat) .68°
Molecule	iCode	Absorption	Molecule	iCode	Absorption
CO2	21	71.637%	F142B	611	0.009%
H2O	11	18.886%	NO2	101	0.001%
O3	31	0.325%	HNO3	121	0.001%
C2H4	391	0.286%	CH4	61	< 0.001%
$\operatorname{Solar}(A)$		0.163%	OH	131	< 0.001%
$\operatorname{Solar-sim}$		0.115%	H2O2	231	< 0.001%
Solar-DU		0.115%	CCl2F2	321	< 0.001%
COF2	361	0.134%	HCOOH	461	< 0.001%
N2O	41	0.065%	HDO	491	< 0.001%
SF6	501	0.048%	CFC113	621	$<\!0.001\%$
NH3	111	0.028%			

 NH_3 , Kiruna, $\varphi = 71.68^{\circ}$, OPD=257cm, FoV=4.06mrad, boxcar apod.

Wavenumber ν in cm^{-1}

Wavenumber ν in cm^{-1}

investigated species line position(s) ν_0 lower state energy E''_{lst} retrieved TCA, information content temperature dependence of the TCA location, date, solar zenith angle spectral interval fitted			: NH_3 : 965.3539 cm : 283.6 cm ⁻¹ : 1.77E+14 m : +1.549\%/K : Kiruna, 15/ : 965.070 - 96	e^{-1} $colec/cm^2$, 0. (trop),847 Mar/97, 71 55.700 cm^{-1}	5 %/K (strat) .68°
Molecule	iCode	Absorption	Molecule	iCode	Absorption
CO2	21	5.052%	HDO	491	0.012%
O3	31	3.043%	CHF2Cl	421	0.003%
H2O	11	2.204%	ClONO2	271	0.002%
O3	3 3	1.508%	NO2	101	0.001%
NH3	111	0.693%	CCl3F	331	0.001%
$\operatorname{Solar}(A)$		0.121%	CH4	61	< 0.001%
Solar-sim		$<\!0.001\%$	HNO3	121	< 0.001%
Solar-DU		$<\!0.001\%$	OH	131	< 0.001%
C2H4	391	0.090%	H2O2	231	< 0.001%
COF2	361	0.068%	HCOOH	461	< 0.001%
F142B	611	0.025%	CFC113	621	< 0.001%
N2O	41	0.020%			

 NH_3 , Kiruna, $\varphi = 71.68^{\circ}$, OPD=257cm, FoV=4.06mrad, boxcar apod.

Wavenumber ν in cm^{-1}

Wavenumber ν in cm^{-1}

investigated species				$NH_{3}, (CO_{2})$)		
line position(s) ν_0				967.3463, (967.7075) cm^{-1}			
lower state energy E''_{lot}				$85.9, (1416.3) \ cm^{-1}$			
retrieved TCA, information content				<1.0E+14, (7.31E+21) molec/cm ² , 3.0, (380.1)			
temperature dependence of the TCA			:	n.a., (-3.047)%/K (trop), n.a., (726)%/K (strat)			
location, dat	te, solar zen	ith angle	:	Kiruna, $15/Mar/97$, 71.68°			
spectral inte	rval fitted		:	$967.140 - 968.330 \ cm^{-1}$			
Molecule	iCode	Absorption		Molecule	iCode	Absorption	
CO2	21	69.855%		ClONO2	271	0.003%	
H2O	11	5.859%		NO2	101	0.001%	
O3	31	4.197%		HDO	491	0.001%	
O3	3 3	2.331%		CH4	61	< 0.001%	
NH3	111	1.164%		HNO3	121	$<\!0.001\%$	
$\operatorname{Solar}(A)$		0.220%		OH	131	$<\!0.001\%$	
$\operatorname{Solar-sim}$		0.012%		H2O2	231	< 0.001%	
Solar-DU		0.012%		CCl3F	331	< 0.001%	
C2H4	391	0.190%		CHF2Cl	421	< 0.001%	
COF2	361	0.112%		HCOOH	461	$<\!0.001\%$	
F142B	611	0.074%		CFC113	621	$<\!0.001\%$	
N2O	41	0.015%					

 $O_3(i3)$, Kiruna, $\varphi = 71.68^{\circ}$, OPD=257cm, FoV=4.06mrad, boxcar apod.

Wavenumber ν in cm^{-1}

investigated species line position(s) ν_0 lower state energy E''_{lst} retrieved TCA, information content temperature dependence of the TCA location, date, solar zenith angle spectral interval fitted $O_3(i3 = {}^{16}O{}^{18}O{}^{16}O), (O_3)$

975.2838, (975.1705) cm^{-1}

495.4, (1484.3) cm^{-1}

: 1.10E+19 (9.18E+19) molec/cm², 23.9, (36.5)

: -.123 (-.409)%/K (trop), -.907 (-3.496)%/K (strat)

: Kiruna, 15/Mar/97, 71.68°

: $974.800 - 975.512 \ cm^{-1}$

Molecule	iCode	Absorption	Molecule	iCode	Absorption
CO2	21	16.411%	ClONO2	271	0.007%
O3	31	10.270%	N2O	41	0.002%
O3	3 3	5.860%	CH4	61	0.001%
H2O	11	3.617%	NO2	101	0.001%
$\operatorname{Solar}(A)$		0.998%	NH3	111	0.001%
Solar-sim		1.301%	CFC113	621	0.001%
Solar-DU		0.650%	OH	131	< 0.001%
O3	3 2	0.654%	H2O2	231	< 0.001%
C2H4	391	0.165%	HCOOH	461	< 0.001%
COF2	361	0.103%	HDO	491	< 0.001%
F142B	611	0.012%			

:

 $O_3(i3)$, Kiruna, $\varphi = 71.68^{\circ}$, OPD=257cm, FoV=4.06mrad, boxcar apod.

Wavenumber ν in cm^{-1}

investigated species			:	$O_3(i3 = {}^{16}O_3)$	$O^{18}O^{16}O), ($	$O_3)$	
line position(s) ν_0			:	976.7864, (9	76.5119) cm^{-1}	-1	
lower state energy E''_{lst}			:	446.8, (1495.	0) cm^{-1}		
retrieved TCA, information content			:	1.10E + 19, (9)	9.14E+18) ma	$blec/cm^2, 21.5, (28.2)$	
temperature dependence of the TCA			:	218, (341)	$\%/K$ (trop), \cdot	728, $(-3.346)%/K$ (strat)	
location, dat	te, solar zen	ith angle	:	Kiruna, 15/	Mar/97, 71	$.68^{o}$	
spectral interval fitted			:	$976.112 - 977.033 \ cm^{-1}$			
Molecule	iCode	Absorption		Molecule	iCode	Absorption	
CO2	21	28.468%		ClONO2	271	0.008%	
O3	31	20.861%		N2O	41	0.002%	
H2O	11	10.222%		CH4	61	0.001%	
O 3	3 3	7.330%		NO2	101	0.001%	
O3	3 2	0.800%		CFC113	621	0.001%	
$\operatorname{Solar}(A)$		0.270%		NH3	111	$<\!0.001\%$	
Solar-sim		0.303%		OH	131	$<\!0.001\%$	
Solar-DU		$<\!0.001\%$		H2O2	231	$<\!0.001\%$	
C2H4	391	0.092%		N2O5	261	$<\!0.001\%$	
COF2	361	0.084%		HCOOH	461	< 0.001%	
F142B	611	0.012%		HDO	491	< 0.001%	

 $O_3(i3)$, Kiruna, $\varphi = 71.68^{\circ}$, OPD=257cm, FoV=4.06mrad, boxcar apod.

Wavenumber ν in cm^{-1}

investigated species			:	$O_3(i3 = {}^{16}C$	$O^{18}O^{16}O), ($	$O_3)$	
line position(s) ν_0			:	977.9250, (9)	77.6600) cm^{-1}	-1	
lower state energy E''_{lst}			:	421.4, (1357.	0) cm^{-1}		
retrieved TCA, information content			:	1.02E+19, (9)	9.34E+18) ma	$blec/cm^2, 32.1, (57.8)$	
temperature dependence of the TCA			:	107, (284)	$\%/K$ (trop), \cdot	566, (-3.218)%/K (strat)	
location, date, solar zenith angle			:	Kiruna, $15/$	Mar/97, 71	$.68^{o}$	
spectral interval fitted			:	$977.620 - 978.110 \ cm^{-1}$			
Molecule	iCode	Absorption		Molecule	iCode	Absorption	
<i>O</i> 3	31	27.938%		ClONO2	271	0.009%	
CO2	21	13.418%		N2O	41	0.001%	
O 3	3 3	8.818%		CH4	61	0.001%	
H2O	11	8.136%		NO2	101	0.001%	
$\operatorname{Solar}(A)$		2.879%		HDO	491	0.001%	
$\operatorname{Solar-sim}$		3.953%		CFC113	621	0.001%	
Solar-DU		3.244%		NH3	111	$<\!0.001\%$	
O3	3 2	1.000%		OH	131	< 0.001%	
C2H4	391	0.195%		H2O2	231	$<\!0.001\%$	
COF2	361	0.093%		N2O5	261	$<\!0.001\%$	
F142B	611	0.012%		HCOOH	461	< 0.001%	

 $O_3(i3)$, Kiruna, $\varphi = 71.68^{\circ}$, OPD=257cm, FoV=4.06mrad, boxcar apod.

Wavenumber ν in cm^{-1}

Wavenumber ν in cm^{-1}

investigated species			:	$O_3(i3 = {}^{16}O_3)$	$O^{18}O^{16}O), ($	$O_3)$	
line position(s) ν_0			:	979.4801, (9	$78.9563) \ cm^{-1}$	-1	
lower state e	energy E_{lst}''		:	374.9, (1234.	1) cm^{-1}		
retrieved TCA, information content			:	1.09E+19, $(1.06E+19)$ molec/cm ² , 49.1, (141.3)			
temperature dependence of the TCA			:	212, (667)	%/K (trop),	548, $(-2.625)%/K$ (strat)	
location, date, solar zenith angle			:	Kiruna, 15/	Mar/97, 71	.68°	
spectral inte	erval fitted	-	:	$978.875 - 979.540 \ cm^{-1}$			
Molecule	iCode	Absorption		Molecule	iCode	Absorption	
O3	31	33.777%		F142B	611	0.011%	
CO2	21	12.121%		ClONO2	271	0.010%	
O 3	3 3	10.313%		N2O	41	0.001%	
O3	3 2	1.246%		NO2	101	0.001%	
H2O	11	0.477%		CFC113	621	0.001%	
C2H4	391	0.175%		CH4	61	< 0.001%	
COF2	361	0.067%		NH3	111	< 0.001%	
$\operatorname{Solar}(A)$		0.051%		OH	131	< 0.001%	
Solar-sim		$<\!0.001\%$		H2O2	231	< 0.001%	
Solar-DU		< 0.001%		N2O5	261	< 0.001%	
HDO	491	0.031%		HCOOH	461	< 0.001%	

 $O_3(i3)$, Kiruna, $\varphi = 71.68^o$, OPD=257cm, FoV=4.06mrad, boxcar apod.

102

Wavenumber ν in cm^{-1}

investigated species			:	$O_3(i3 = {}^{16}O_3)$	$O^{18}O^{16}O), ($	$O_3)$		
line position(s) ν_0			:	980.6024, (9	80.4040) cm ⁻	-1		
lower state energy E''_{let}			:	351.1, (1190.	.5) cm^{-1}			
retrieved TO	CA, informa	tion content	:	1.10E + 19, (1.10E+19, $(1.05E+19)$ molec/cm ² , 47.6, (161.6)			
temperature dependence of the TCA			:	131, (727)	%/K (trop),	467, (-2.516)%/K (strat)		
location, date, solar zenith angle			:	Kiruna, 15/	Mar/97, 71	.68°		
spectral inte	erval fitted	_	:	$979.975 - 980.800 \ cm^{-1}$				
Molecule	iCode	Absorption		Molecule	iCode	Absorption		
<i>O</i> 3	31	41.515%		F142B	611	0.009%		
CO2	21	18.088%		HDO	491	0.002%		
O3	3 3	10.999%		N2O	41	0.001%		
O3	3 2	1.498%		CH4	61	0.001%		
C2H4	391	0.081%		NO2	101	0.001%		
$\operatorname{Solar}(A)$		0.071%		CFC113	621	0.001%		
Solar-sim		< 0.001%		NH3	111	< 0.001%		
Solar-DU		< 0.001%		OH	131	< 0.001%		
COF2	361	0.055%		H2O2	231	< 0.001%		
H2O	11	0.030%		N2O5	261	< 0.001%		
ClONO2	271	0.012%		HCOOH	461	< 0.001%		

 $O_3(i3)$, Kiruna, $\varphi = 71.68^{\circ}$, OPD=257cm, FoV=4.06mrad, boxcar apod.

Wavenumber ν in cm^{-1}

investigated species				$O_3(i3 = {}^{16}O_3)$	$O^{18}O^{16}O), ($	$O_3)$	
line position(s) ν_0			:	981.7107, (981.4870) cm^{-1}			
lower state e	energy E_{lst}''		:	$328.0, (1404.3) \ cm^{-1}$			
retrieved TCA, information content				1.10E+19, $(1.03E+19)$ molec/cm ² , 52.6, (96.0)			
temperature dependence of the TCA			:	145, $(656)%/K$ (trop), 340 , $(-2.827)%/K$ (strat)			
location, date, solar zenith angle			:	Kiruna, $15/Mar/97$, 71.68°			
spectral inte	erval fitted	-	:	$981.055 - 981.777 \ cm^{-1}$			
Molecule	iCode	Absorption	I	Molecule	iCode	Absorption	
<i>O</i> 3	31	67.756%		F142B	611	0.008%	
CO2	21	49.626%		N2O	41	0.001%	
O 3	3 3	12.223%		NO2	101	0.001%	
O3	3 2	1.850%		CFC113	621	0.001%	
H2O	11	1.215%		CH4	61	< 0.001%	
$\operatorname{Solar}(A)$		0.539%		NH3	111	$<\!0.001\%$	
Solar-sim		0.577%		OH	131	$<\!0.001\%$	
Solar-DU		0.002%		H2O2	231	$<\!0.001\%$	
C2H4	391	0.132%		N2O5	261	$<\!0.001\%$	
COF2	361	0.040%		HCOOH	461	$<\!0.001\%$	
ClONO2	271	0.014%		HDO	491	< 0.001%	

 $O_3(i3)$, Kiruna, $\varphi = 71.68^o$, OPD=257cm, FoV=4.06mrad, boxcar apod.

Wavenumber ν in cm^{-1}

investigated species
line position(s) ν_0
lower state energy E''_{lst}
retrieved TCA, information content
temperature dependence of the TCA
location, date, solar zenith angle
spectral interval fitted

 $O_{3}(i3 = {}^{16}O{}^{18}O{}^{16}O), (O_{3})$ 983.0755, (982.7663) cm^{-1} 311.6, (1272.9) cm^{-1} 1.10E+19, (1.03E+19) $molec/cm^{2}$, 56.1, (94.6)

: -.191, (-.710)%/K (trop), -.304, (-2.77)%/K (strat)

: Kiruna, 15/Mar/97, 71.68° : 982.295 - 983.125 cm^{-1}

Molecule	iCode	Absorption	Molecule	iCode	Absorption
CO2	21	42.825%	F142B	611	0.006%
O3	31	25.368%	N2O	41	0.001%
O3	3 3	13.612%	NO2	101	0.001%
O3	3 2	2.242%	CFC113	621	0.001%
H2O	11	0.794%	CH4	61	< 0.001%
$\operatorname{Solar}(A)$		0.311%	NH3	111	< 0.001%
Solar-sim		0.330%	OH	131	< 0.001%
Solar-DU		0.001%	H2O2	231	< 0.001%
C2H4	391	0.130%	N2O5	261	< 0.001%
COF2	361	0.031%	HCOOH	461	< 0.001%
ClONO2	271	0.016%	HDO	491	< 0.001%

:

:

:

 $O_3(i3)$, Kiruna, $\varphi = 71.68^{\circ}$, OPD=257cm, FoV=4.06mrad, boxcar apod.

Wavenumber ν in cm^{-1}

Wavenumber ν in cm^{-1}

investigated species
line position(s) ν_0
lower state energy E_{lst}''
retrieved TCA, information content
temperature dependence of the TCA
location, date, solar zenith angle
spectral interval fitted

 $O_{3}(i3 = {}^{16}O{}^{18}O{}^{16}O), (O_{3})$ 984.1683, (983.8910) cm^{-1} 298.3, (1204.3) cm^{-1} 1.14E+19, (1.06E+19) $molec/cm^{2}$, 49.9, (119.5)
-.061, (-2.50)%/K (trop), -.048, (-2.45)%/K (strat)

: Kiruna, 15/Mar/97, 71.68° : 983.350 - 984.270 cm^{-1}

1					
Molecule	iCode	Absorption	Molecule	iCode	Absorption
O3	31	42.126%	F142B	611	0.005%
CO2	21	28.267%	NO2	101	0.001%
O3	3 3	14.769%	HDO	491	0.001%
H2O	11	2.630%	CFC113	621	0.001%
O3	3 2	2.573%	N2O	41	< 0.001%
$\operatorname{Solar}(A)$	—	0.130%	CH4	61	< 0.001%
$\operatorname{Solar-sim}$	—	$<\!0.001\%$	NH3	111	< 0.001%
Solar-DU	—	$<\!0.001\%$	OH	131	< 0.001%
C2H4	391	0.064%	H2O2	231	< 0.001%
COF2	361	0.030%	N2O5	261	< 0.001%
ClONO2	271	0.018%	HCOOH	461	< 0.001%

:

:

:

:

Wavenumber ν in cm^{-1}

Wavenumber ν in cm^{-1}

investigated species
line position(s) ν_0
lower state energy E_{lst}''
retrieved TCA, information content
temperature dependence of the TCA
location, date, solar zenith angle
spectral interval fitted

 $O_{3}(i3 = {}^{16}O{}^{18}O{}^{16}O), (O_{3})$ 984.9790, (984.6918) cm^{-1} 263.6, (1064.3) cm^{-1}

1.08E+19, (1.05E+19) molec/cm², 57.7, (236.7)

: -.060, (-.672)%/K (trop), -.251, (-2.17)%/K (strat)

: Kiruna, 15/Mar/97, 71.68°

 $984.470 - 985.280 \ cm^{-1}$

-					
Molecule	iCode	Absorption	Molecule	iCode	Absorption
O3	31	68.144%	COF2	361	0.018%
CO2	21	22.222%	F142B	611	0.004%
O3	3 3	16.327%	NO2	101	0.001%
O3	3 2	3.559%	NH3	111	0.001%
O3	3 5	0.591%	CFC113	621	0.001%
$\operatorname{Solar}(A)$		0.351%	N2O	41	< 0.001%
$\operatorname{Solar-sim}$		0.369%	CH4	61	< 0.001%
Solar-DU		0.001%	OH	131	< 0.001%
H2O	11	0.130%	H2O2	231	< 0.001%
C2H4	391	0.127%	N2O5	261	< 0.001%
HDO	491	0.033%	HCOOH	461	< 0.001%
ClONO2	271	0.018%			
			•		

•

:

:

:

 $O_3(i3)$, Kiruna, $\varphi = 71.68^o$, OPD=257cm, FoV=4.06mrad, boxcar apod.

Wavenumber ν in cm^{-1}

Wavenumber ν in cm^{-1}

investigated	species		:	$O_3(i3 = {}^{16}C$	$O^{18}O^{16}O), ($	$O_3)$			
line position	(s) ν_0		:	986.2977, (9	$86.1021) \ cm^{-1}$	-1			
lower state energy $E_{lst}^{\prime\prime}$:	257.2, (1023.	257.2, (1023.8) cm^{-1}				
retrieved TCA, information content			:	1.10E + 19, (1)	1.10E+19, (1.04E+19) molec/cm ² , 55.5, (255.8)				
temperature dependence of the TCA				159, (668)	%/K (trop), -	295, $(-2.126)%/K$ (strat)			
location, date, solar zenith angle			:	Kiruna, 15/	Kiruna, 15/Mar/97, 71.68°				
spectral interval fitted			:	985.560 - 98	$6.430 \ cm^{-1}$				
Molecule	iCode	Absorption		Molecule	iCode	Absorption			
O3	31	77.785%		H2O	11	0.008%			
CO2	21	22.221%		F142B	611	0.003%			
O3	3 3	17.465%		NO2	101	0.001%			
O3	3 2	3.559%		NH3	111	0.001%			
O3	3 5	0.865%		N2O	41	< 0.001%			
$\operatorname{Solar}(A)$		0.619%		CH4	61	< 0.001%			
Solar-sim		0.808%		OH	131	< 0.001%			
Solar-DU		0.524%		H2O2	231	< 0.001%			
C2H4	391	0.199%		N2O5	261	< 0.001%			
HDO	491	0.028%		HCOOH	461	< 0.001%			
ClONO2	271	0.018%		H2S	471	$<\!0.001\%$			
COF2	361	0.016%		CFC113	621	< 0.001%			

 $O_3(i3)$, Kiruna, $\varphi = 71.68^{\circ}$, OPD=257cm, FoV=4.06mrad, boxcar apod.

Wavenumber ν in cm^{-1}

investigated species
line position(s) ν_0
lower state energy E_{lst}''
retrieved TCA, information content
temperature dependence of the TCA
location, date, solar zenith angle
spectral interval fitted

 $O_3(i3 = {}^{16}O{}^{18}O{}^{16}O), (O_3)$ 987.1014, (987.4795) cm^{-1} 224.5, (1020.0) cm^{-1} 1.12E+19, (1.05E+19) molec/cm², 68.1, (236.0)

-.102, (-.631)%/K (trop), -.218, (-2.03)%/K (strat) : Kiruna, 15/Mar/97, 71.68° :

 $986.580 - 987.675 \ cm^{-1}$

spectral inter	rval fitted	:	986.580 - 98	$57.675 \ cm^{-1}$	
Molecule	iCode	Absorption	Molecule	iCode	Absorption
O3	31	84.975%	NH3	111	0.002%
O3	3 3	19.162%	F142B	611	0.002%
CO2	21	16.927%	NO2	101	0.001%
O3	3 2	4.779%	HDO	491	0.001%
O3	35	0.865%	N2O	41	${<}0.001\%$
$\operatorname{Solar}(A)$		0.638%	CH4	61	${<}0.001\%$
Solar-sim	—	0.783%	OH	131	$<\!0.001\%$
Solar-DU	—	0.521%	H2O2	231	$<\!0.001\%$
C2H4	391	0.172%	N2O5	261	$<\!0.001\%$
ClONO2	271	0.019%	HCOOH	461	$<\!0.001\%$
COF2	361	0.013%	H2S	471	< 0.001%
H2O	11	0.012%	CFC113	621	< 0.001%

•

:

:

 $O_3(i3)$, Kiruna, $\varphi = 71.68^{\circ}$, OPD=257cm, FoV=4.06mrad, boxcar apod.

 $O_3(i3)$, Kiruna, $\varphi = 71.68^o$, OPD=257cm, FoV=4.06mrad, boxcar apod.

Wavenumber ν in cm^{-1}

Wavenumber ν in cm^{-1}

investigated species				$O_3(i3 = {}^{16}0$	$O^{18}O^{16}O),$	(O_3)
line position(s) ν_0				989.1177, (9	$(89.8539) \ cm$	-1
lower state energy E_{lst}''				222.0, (1028	.4) cm^{-1}	
retrieved TCA, information content			:	1.12E + 19, (1.03E+19) m	$olec/cm^2, 52.3, (240.9)$
temperature dependence of the TCA			:	139, (682)	%/K (trop),	009, (-2.117)%/K (st
spectral int	erval fitted		:	989.050 - 99	$90.000 \ cm^{-1}$	· · · · · ·
Molecule	iCode	Absorption	I	Molecule	iCode	Absorption
<i>O</i> 3	31	89.253%		NO2	101	0.001%
O3	3 3	21.646%		NH3	111	0.001%
CO2	21	6.361%		F142B	611	0.001%
O3	3 2	4.403%		N2O	41	< 0.001%
O3	35	0.943%		CH4	61	< 0.001%
Solar(A)		0.917%		OH	131	< 0.001%

<i>O</i> 3	35	0.943%	CH4	61	< 0.001%
$\operatorname{Solar}(A)$		0.917%	OH	131	< 0.001%
Solar-sim		1.137%	OCS	193	< 0.001%
Solar-DU		0.012%	H2O2	231	< 0.001%
CO2	2 2	0.539%	N2O5	261	< 0.001%
C2H4	391	0.141%	HCOOH	461	< 0.001%
H2O	11	0.076%	H2S	471	< 0.001%
ClONO2	271	0.028%	HDO	491	< 0.001%
COF2	361	0.006%	CFC113	621	< 0.001%

 $O_3(i3)$, Kiruna, $\varphi = 71.68^{\circ}$, OPD=257cm, FoV=4.06mrad, boxcar apod.

Wavenumber ν in cm^{-1}

Wavenumber ν in cm^{-1}

investigated	species		:	$O_3(i3 = {}^{16}O_3)$	$O^{18}O^{16}O), ($	(O_3)
line position(s) ν_0				990.4487, (9	90.2736) cm	-1
lower state energy E_{lst}''				185.1, (907.0) cm^{-1}	
retrieved TCA, information content				1.08E+19, (1.04E+19) m	$olec/cm^2, 62.3, (28)$
temperature dependence of the TCA			:	241, (614)	%/K (trop),	+.079, (-1.89)%/K
spectral inte	erval fitted		:	990.000 - 990.000	$00.888 \ cm^{-1}$	
Molecule	iCode	Absorption		Molecule	iCode	Absorption
<i>O</i> 3	31	94.685%		NO2	101	0.001%
O3	3 3	23.703%		HDO	491	0.001%
O3	3 2	7.038%		F142B	611	0.001%
CO2	21	4.337%		N2O	41	< 0.001%
O3	3 5	1.088%		OH	131	< 0.001%
H2O	11	1.037%		OCS	193	< 0.001%
$\operatorname{Solar}(A)$		0.250%		H2O2	231	$<\!0.001\%$
Solar-sim		0.308%		N2O5	261	< 0.001%

00	00	1.0000/0	011	101	(0.001/0
H2O	11	1.037%	OCS	19 3	< 0.001%
$\operatorname{Solar}(A)$		0.250%	H2O2	231	< 0.001%
Solar-sim		0.308%	N2O5	261	< 0.001%
Solar-DU		< 0.001%	COF2	361	< 0.001%
C2H4	391	0.114%	HCOOH	461	< 0.001%
ClONO2	271	0.018%	H2S	471	< 0.001%
NH3	111	0.004%	CFC113	621	< 0.001%
CH4	61	0.001%			

 $O_3(i3)$, Kiruna, $\varphi = 71.68^o$, OPD=257cm, FoV=4.06mrad, boxcar apod.

Wavenumber ν in cm^{-1}

Wavenumber ν in cm^{-1}

investigated species line position(s) ν_0 lower state energy E''_{lst} retrieved TCA, information content temperature dependence of the TCA spectral interval fitted			::	$\begin{split} &O_3(i3 = \ ^{16}O^{\ 18}O^{\ 16}O), (O_3) \\ &991.2137, \ (991.1447) \ cm^{-1} \\ &155.8, \ (1023.1) \ cm^{-1} \\ &1.09E+19, \ (1.04E+19) \ molec/cm^2, \ 76.6, \ (213.7) \\ &+.014, \ (657)\%/K \ (trop), \ +.261, \ (-2.05)\%/K \ (strat) \\ &991.040 \ - \ 991.518 \ cm^{-1} \end{split}$			
Molecule	iCode	Absorption	L	Molecule	iCode	Absorption	
<i>O</i> 3	31	79.930%		HDO	491	0.002%	
O3	3 3	23.302%		CH4	61	0.001%	
O3	3 2	3.583%		F142B	611	0.001%	
CO2	21	2.898%		N2O	41	$<\!0.001\%$	
O3	35	1.239%		NO2	101	$<\!0.001\%$	
CO2	2 2	0.686%		OH	131	< 0.001%	
O3	34	0.556%		OCS	19 3	$<\!0.001\%$	
C2H4	391	0.082%		H2O2	231	$<\!0.001\%$	
NH3	111	0.053%		N2O5	261	$<\!0.001\%$	
$\operatorname{Solar}(A)$		0.041%		COF2	361	$<\!0.001\%$	
Solar-sim		< 0.001%		HCOOH	461	$<\!0.001\%$	
H2O	11	0.019%		H2S	471	$<\!0.001\%$	
ClONO2	271	0.015%		CFC113	621	< 0.001%	

 $O_3(i3)$, Kiruna, $\varphi = 71.68^o$, OPD=257cm, FoV=4.06mrad, boxcar apod.

Wavenumber ν in cm^{-1}

Wavenumber ν in cm^{-1}

 $O_3(i3 = {}^{16}O{}^{18}O{}^{16}O), (O_3)$ investigated species 992.1759, 992.1764, (992.1168) cm^{-1} line position(s) ν_0 lower state energy E''_{lst} 140.0, 174.1, (952.0) cm^{-1} ٠ retrieved TCA, information content 1.07E+19, (1.04E+19) molec/cm², 103.1, (244.2) : temperature dependence of the TCA -.056, (-.623)%/K (trop), +.155, (-1.839)%/K (strat) : spectral interval fitted $992.058 - 992.849 \ cm^{-1}$:

Molecule	iCode	Absorption	Molecule	iCode	Absorption
O3	31	90.940%	HDO	491	0.003%
O3	3 3	37.522%	CH4	61	0.001%
O3	3 2	6.180%	F142B	611	0.001%
CO2	21	1.902%	N2O	41	$<\!0.001\%$
O3	3 5	1.433%	NO2	101	$<\!0.001\%$
O3	34	0.890%	OH	131	$<\!0.001\%$
NH3	111	0.691%	OCS	19 3	${<}0.001\%$
C2H4	391	0.110%	H2O2	231	$<\!0.001\%$
$\operatorname{Solar}(A)$		0.042%	CCl2F2	321	$<\!0.001\%$
Solar-sim		0.002%	COF2	361	$<\!0.001\%$
Solar-DU		0.002%	HCOOH	461	$<\!0.001\%$
ClONO2	271	0.018%	H2S	471	$<\!0.001\%$
H2O	11	0.004%	CFC113	621	$<\!0.001\%$

 $O_3(i3)$, Kiruna, $\varphi = 71.68^o$, OPD=257cm, FoV=4.06mrad, boxcar apod.

Wavenumber ν in cm^{-1}

investigated species				$O_3(i3 = {}^{16}O^1$	$^{8}O^{16}O), (0$	\mathcal{O}_3)	
line position(s) ν_0			:	993.7910, (993.	.7116) cm^{-}	1	
lower state energy E_{lst}''			:	172.2, (948.2)	cm^{-1}		
retrieved TCA	A, informa	tion content	:	1.08E+19, (1.0)	4E+19) mo	$lec/cm^2, 38.3, (188.9)$)
temperature d	lependenc	e of the TCA	:	051, (661)%/	/K (trop), -	+.190, (-1.87)%/K (st	trat)
spectral interval fitted			:	993.075 - 994.1	$220 \ cm^{-1}$		
Molecule	iCode	Absorption		Molecule	iCode	Absorption	

Molecule	iCode	Absorption	Molecule	ICode	Absorption
O3	31	91.457%	HDO	491	0.029%
O3	3 3	25.793%	CH4	61	0.001%
O3	3 2	7.215%	F142B	611	0.001%
$\operatorname{Solar}(A)$		2.544%	N2O	41	$<\!0.001\%$
$\operatorname{Solar-sim}$		3.698%	NO2	101	$<\!0.001\%$
$\operatorname{Solar}(A)$	—	2.544%	OH	131	$<\!0.001\%$
O3	35	1.650%	OCS	19 3	$<\!0.001\%$
CO2	21	1.238%	H2O2	231	$<\!0.001\%$
O3	34	0.732%	CCl2F2	321	$<\!0.001\%$
C2H4	391	0.194%	COF2	361	$<\!0.001\%$
ClONO2	271	0.048%	HCOOH	461	$<\!0.001\%$
H2O	11	0.036%	H2S	471	$<\!0.001\%$
NH3	111	0.030%	CFC113	621	$<\!0.001\%$

Wavenumber ν in cm^{-1}

				. 10	10 10				
investigated species			:	$O_3(i2 = {}^{16}$	$O_3(i2 = {}^{16}O{}^{16}O{}^{18}O), O_3(i3), (O_3)$				
line position(s) ν_0			:	1002.6060, ((1002.7062) c	m^{-1}			
lower state energy $E_{lst}^{\prime\prime}$				328.4, (945.2	2) cm^{-1}				
retrieved TCA, information content			:	1.12E+19, $(1.03E+19)$ molec/cm ² , 46.2, (179.4)					
temperature	e dependenc	e of the TCA	:	+.201, $(412)%/K$ (trop), $+.318$, $(-1.434)%/K$ (strat)					
spectral inte	erval fitted		:	1002.234 - 1	$1002.956\ cm$	-1			
Molecule	iCode	Absorption		Molecule	iCode	Absorption			
<i>O</i> 3	31	100.000%		N2O	41	0.001%			

morecure	icoue	rissorption	molecule	icoue	rissorption
O3	31	100.000%	N2O	41	0.001%
O3	3 3	20.278%	NH3	111	0.001%
O3	3 2	16.362%	OCS	19 3	0.001%
O3	35	3.835%	CH4	61	< 0.001%
O3	34	1.709%	NO2	101	< 0.001%
CO2	2 2	1.615%	OH	131	< 0.001%
$\operatorname{Solar}(A)$	—	0.434%	H2O2	231	< 0.001%
$\operatorname{Solar-sim}$	—	0.491%	CCl2F2	321	< 0.001%
Solar-DU	—	0.001%	HCOOH	461	< 0.001%
C2H4	391	0.180%	H2S	471	< 0.001%
H2O	11	0.100%	HDO	491	< 0.001%
CO2	21	0.043%	F142B	611	< 0.001%
ClONO2	271	0.010%			

 $O_3(i2)$, Kiruna, $\varphi = 71.68^o$, OPD=257cm, FoV=4.06mrad, boxcar apod.

130

Wavenumber ν in cm^{-1}

investigated species			:	$O_3(i2 = {}^{16}O_3)$	$O^{16}O^{18}O), ($	(O_3)		
line position	(s) ν_0		:	1043.4404, ($1043.4404, (1043.4030) \ cm^{-1}$			
lower state energy E_{lst}''			:	230.4, (1097.)	$230.4, (1097.1) \ cm^{-1}$			
retrieved TCA, information content			:	1.14E+19, ($1.01E+19) m_{\odot}$	$plec/cm^2, 46.9, (82.6)$		
temperature	dependence	e of the TCA	:	302, (+2.34)%/K (trop),	,101, $(+1.95)\%/K$ (strat)		
location, dat	e, solar zen	ith angle	:	Kiruna, 15/	Mar/97, 71	.68°		
spectral interval fitted			:	1043.005 - 1	$043.630 \ cm$	-1		
Molecule	iCode	Absorption		Molecule	iCode	Absorption		
<i>O</i> 3	31	100.000%		NH3	111	0.002%		
CO2	21	80.375%		HO2	221	0.002%		
O3	3 2	31.399%		CH4	61	0.001%		
O3	34	7.946%		HDO	491	0.001%		
O3	3 5	2.462%		SO2	91	< 0.001%		
OCS	191	0.117%		OH	131	< 0.001%		
$\operatorname{Solar}(A)$		0.101%		H2O2	231	< 0.001%		
Solar-sim		< 0.001%		ClONO2	271	< 0.001%		
H2O	11	0.083%		CCl2F2	321	< 0.001%		
C2H4	391	0.032%		CCl3F	331	< 0.001%		
N2O	41	0.022%		H2S	471	< 0.001%		
HCOOH	461	0.004%		F142B	611	< 0.001%		

 $O_3(i2)$, Kiruna, $\varphi = 71.68^o$, OPD=257cm, FoV=4.06mrad, boxcar apod.

Wavenumber ν in cm^{-1}

investigated line position lower state e retrieved TC temperature	species (s) ν_0 nergy E''_{lst} (A, informadependence)	tion content e of the TCA	: : : :	$O_{3}(i2 = {}^{16}O{}^{16}O{}^{18}O), (O_{3})$ $1044.0128, (1044.0916) cm^{-1}$ $288.1, (1046.3) cm^{-1}$ $1.13E+19, (1.06E+19) molec/cm^{2}, 26.3, (153.0)$ $+.280, (+.099)\%/K (trop), +1.007, (142)\%/K (strat)$			
location, date, solar zenith angle			:	Kiruna, 15, 1043 620 –	/Mar/97, 71 1044 355 cm	$.68^{o}$ -1	
spectral interval inted				1045.020 -	1044.333 cm	A 1	
Molecule	iCode	Absorption		Molecule	iCode	Absorption	
O3	31	100.000%		HO2	221	0.003%	
O3	3 2	21.646%		NH3	111	0.002%	
O3	34	8.170%		CH4	61	0.001%	
O3	3 5	2.548%		HDO	491	0.001%	
CO2	21	1.181%		SO2	91	$<\!0.001\%$	
H2O	11	0.125%		OH	131	$<\!0.001\%$	
OCS	191	0.104%		H2O2	231	${<}0.001\%$	
C2H4	391	0.085%		ClONO2	271	${<}0.001\%$	
$\operatorname{Solar}(A)$		0.031%		CCl2F2	321	$<\!0.001\%$	
Solar-sim		0.001%		CCl3F	331	${<}0.001\%$	
N2O	41	0.022%		H2S	471	${<}0.001\%$	
HCOOH	461	0.004%		F142B	611	< 0.001%	

 $O_3(i2)$, Kiruna, $\varphi = 71.68^o$, OPD=257cm, FoV=4.06mrad, boxcar apod.

Wavenumber ν in cm^{-1}

Wavenumber ν in cm^{-1}

investigated species line position(s) ν_0 lower state energy E''_{lst} retrieved TCA, information content temperature dependence of the TCA spectral interval fitted				$O_{3}(i2 = {}^{16}O{}^{16}O{}^{18}O), (O_{3})$ 1090.3638, (1090.4761) cm^{-1} 32.6, (385.7) cm^{-1} 1.20E+19, (1.03E+19) $molec/cm^{2}$, 57.7, (454.7) +.046, (102)%/K (trop), +.436, (092)%/K (strat) 1090.165 - 1090.650 cm^{-1}			
Molecule	iCode	Absorption		Molecule	iCode	Absorption	
<i>O</i> 3	31	75.805%		SO2	91	0.009%	
CO2	21	23.346%		HO2	221	0.006%	
O 3	3 2	7.579%		F142B	611	0.003%	
CCl2F2	321	3.202%		NH3	111	0.002%	
H2O	11	2.158%		ClONO2	271	0.001%	
O3	3 3	1.253%		C2H4	391	0.001%	
CCl3F	331	0.919%		N2O	41	$<\!0.001\%$	
CHF2Cl	421	0.244%		HNO3	121	< 0.001%	
HCOOH	461	0.183%		OH	131	< 0.001%	
$\operatorname{Solar}(A)$		0.112%		ClO	182	$<\!0.001\%$	
Solar-sim		< 0.001%		OCS	191	< 0.001%	
HDO	491	0.025%		H2O2	231	< 0.001%	
CH4	61	0.024%		H2S	471	< 0.001%	

HCOOH, Kiruna, $\varphi = 71.68^{\circ}$, OPD=257cm, FoV=4.06mrad, boxcar apod.

Wavenumber ν in cm^{-1}

Wavenumber ν in cm^{-1}

investigated	species		:	HCOOH, (0)	$O_3)$				
line position(s) ν_0				$1104.948^{*)},$	1104.948^{*} , 1105.025^{*} , 1105.069^{*} , $(1104.8375) \ cm^{-1}$				
lower state e	nergy E_{lst}''		:	24 to 129 , (2)	281.8) cm^{-1}				
retrieved TC	A, informa	tion content	:	3.06e15, (1.0	3e19) molec/	$cm^2, 3.5, 4.2, 3.0 (301.6)$			
temperature	dependence	e of the TCA	:	+.317, (073))%/K (trop),	,096, (160) $\%/K$ (strat)			
spectral inter	val fitted		:	1104.110 - 1	$106.000 \ cm$	-1			
Molecule	iCode	Absorption		Molecule	iCode	Absorption			
<i>O</i> 3	31	82.755%		CO2	21	0.040%			
CCl2F2	321	5.895%		SO2	91	0.028%			
O3	3 2	3.312%		NH3	111	0.028%			
H2O	11	2.531%		HO2	221	0.012%			
CHF2Cl	421	1.343%		F142B	611	0.012%			
CH4	6 3	0.766%		ClONO2	271	0.006%			
CH4	61	0.756%		C2H4	391	0.004%			
HDO	491	0.696%		N2O	41	0.001%			
HCOOH	461	0.588%		HNO3	121	0.001%			
O3	3 3	0.533%		H2S	471	0.001%			
CCl3F	331	0.196%		ClO	181	${<}0.001\%$			
$\operatorname{Solar}(A)$		0.110%		H2O2	231	< 0.001%			
Solar-sim		0.001%		N2O5	261	${<}0.001\%$			

 O_3 , Kiruna, $\varphi = 71.68^{\circ}$, OPD=257cm, FoV=4.06mrad, boxcar apod.

Wavenumber ν in cm^{-1}

line position	$n(s) \nu_0$: 1146.4714 cr	n^{-1}				
lower state e	energy E_{lst}''		: $372.4 \ cm^{-1}$					
retrieved TO	CA, informa	ation content	: 1.01E + 19 m	$1.01E+19 \ molec/cm^2, \ 467.8$				
temperature	e dependenc	e of the TCA	: -0.148%/K (trop), -0.386	5%/K (strat)			
location, da	te, solar zer	nith angle	: Kiruna, 15/	Kiruna, 15/Mar/97, 71.68°				
spectral inte	erval fitted		: 1146.405 - 1	$146.535 \ cm$	1			
Molecule	iCode	Absorption	Molecule	iCode	Absorption			
O3	31	77.622%	F142B	611	0.038%			
N2O	41	54.549%	HCOOH	461	0.011%			
CCl2F2	321	2.144%	HNO3	121	0.002%			
HDO	491	0.965%	NH3	111	0.001%			
CH4	6 3	0.671%	C2H4	391	0.001%			
N2O	4 4	0.625%	NO2	101	< 0.001%			
N2O	4 3	0.601%	OH	131	< 0.001%			
CHF2Cl	421	0.232%	ClO	181	< 0.001%			
H2O	11	0.225%	HO2	221	< 0.001%			
SO2	91	0.173%	H2O2	231	< 0.001%			
$\operatorname{Solar}(A)$		0.142%	N2O5	261	< 0.001%			
Solar-sim	_	0.085%	H2S	471	< 0.001%			
CH4	61	0.051%						

 SO_2 , Kiruna, $\varphi = 71.68^o$, OPD=257cm, FoV=4.06mrad, boxcar apod.

140

Wavenumber ν in cm^{-1}

investigated species line position(s) ν_0 lower state energy E''_{lst} retrieved TCA, information content temperature dependence of the TCA location, date, solar zenith angle spectral interval fitted			SO_2 $1156.9140^{*)}, 1157.8785^{*)} cm^{-1}$ $13.0 \text{ to } 404.0 cm^{-1}$ $1.06E+16 \ molec/cm^2, 6.4, 2.5$ +5.552%/K (trop), +2.979%/K (strat) Kiruna, $15/\text{Mar}/97, 71.68^o$ $1156.780 - 1158.050 \ cm^{-1}$		
Molecule	iCode	Absorption	Molecule	iCode	Absorption
<i>O</i> 3	31	79.185%	HCOOH	461	0.007%
N2O	41	77.579%	F142B	611	0.002%
CCl2F2	321	8.252%	HNO3	121	0.001%
CH4	6 3	1.603%	C2H4	391	0.001%
HDO	491	1.204%	H2S	471	0.001%
$\operatorname{Solar}(A)$		0.540%	NO2	101	$<\!0.001\%$
Solar-sim		0.562%	OH	131	< 0.001%
H2O	11	0.223%	ClO	181	< 0.001%
$\mathbf{SO2}$	91	0.142%	H2O2	231	< 0.001%
CH4	61	0.080%	N2O5	261	< 0.001%
NH3	111	0.033%	CHF2Cl	421	${<}0.001\%$

CFC-12, Kiruna, φ =71.68°, OPD=257cm, FoV=4.06mrad, boxcar apod.

Wavenumber ν in cm^{-1}

Wavenumber ν in cm^{-1}

investigated	species		:	CCl_2F_2 (Freon12), (O_3)					
line position(s) ν_0				1161.0400^{*}	1161.0400^{*} , (1161.2893) cm^{-1}				
lower state energy E_{let}''				178.0, (289.1) cm^{-1}				
retrieved TCA, information content			:	9.54E + 15, ($1.00E+19) m_{\odot}$	$olec/cm^2, 142.3, (218.8)$			
temperature	dependenc	e of the TCA	:	+.096, (221))%/K (trop)	, +.008, (313)%/K (str			
location, dat	te, solar zen	ith angle	:	Kiruna, 15/	Mar/97, 71	.68°			
spectral interval fitted			:	1160.220 - 1	$1160.220 - 1161.360 \ cm^{-1}$				
Molecule	iCode	Absorption		Molecule iCode Absorption					
N2O	41	72.056%		HCOOH	461	0.007%			
O3	31	63.694%		NH3	111	0.003%			
CCL2F2	321	39.856%		F142B	611	0.002%			
CH4	61	2.812%		H2S	471	0.001%			
HDO	491	2.244%		NO2	101	$<\!0.001\%$			
CH4	6 3	1.216%		HNO3	121	$<\!0.001\%$			
$\operatorname{Solar}(A)$		0.828%		OH	131	< 0.001%			
Solar-sim		0.942%		ClO	181	< 0.001%			
N2O	4 4	0.544%		H2O2	231	< 0.001%			
H2O	11	0.476%		C2H4	391	< 0.001%			
SO2	91	0.212%							

 N_2O , Kiruna, $\varphi = 71.68^o$, OPD=257cm, FoV=4.06mrad, boxcar apod.

Wavenumber ν in cm^{-1}

Wavenumber ν in cm^{-1}

investigated	species		:	: $N_2O, (O_3)$					
line position(s) ν_0			:	1163.1315, (1163.4222) ca	m^{-1}			
lower state e	energy E_{lst}''		:	17.6, (253.9)	17.6, (253.9) cm^{-1}				
retrieved TO	CA, informa	tion content	:	5.60E + 18, (1.01E+19) mc	$plec/cm^2, 407.6, (381.7)$			
temperature	e dependenc	e of the TCA	:	+.483, (114))%/K (trop),	+.112, $(109)%/K$ (strat)			
location, da	te, solar zen	ith angle	:	Kiruna, 15/	Mar/97, 71	$.68^{o}$			
spectral interval fitted			:	$1162.850 - 1163.500 \ cm^{-1}$					
Molecule	iCode	Absorption	Ĩ	Molecule	iCode	Absorption			
N2O	41	60.307%		HCOOH	461	0.005%			
O3	31	59.257%		HNO3	121	0.002%			
CCl2F2	321	2.279%		F142B	611	0.002%			
HDO	491	2.014%		NO2	101	< 0.001%			
CH4	6 3	1.096%		NH3	111	< 0.001%			
H2O	11	0.871%		OH	131	< 0.001%			
N2O	44	0.640%		ClO	181	< 0.001%			
SO2	91	0.209%		H2O2	231	< 0.001%			
$\operatorname{Solar}(A)$		0.110%		C2H4	391	< 0.001%			
$\operatorname{Solar-sim}$	—	$<\!0.001\%$		H2S	471	< 0.001%			
CH4	61	0.018%							

 N_2O , Kiruna, $\varphi = 71.68^o$, OPD=257cm, FoV=4.06mrad, boxcar apod.

Wavenumber ν in cm^{-1}

investigated line position lower state e retrieved TC temperature location, dat spectral inte	species (s) ν_0 energy E''_{lst} CA, informate dependence te, solar zent erval fitted	tion content e of the TCA nith angle	:::::::::::::::::::::::::::::::::::::::	N_2O 1183.5154 cr 128.2 cm ⁻¹ 5.59E+18 m +0.118%/K Kiruna, 15/ 1183.113 - 1	n^{-1} $olec/cm^2$, 68 (trop), -0.00 Mar/97, 71 183.850 cm	$^{82.1}_{6\%/{ m K}~({ m strat})}$.68° $^{-1}$
Molecule	iCode	Absorption		Molecule	iCode	Absorption
N2O	41	78.810%		F142B	611	0.035%
O3	31	25.283%		HDO	491	0.015%
H2O	11	4.912%		HCOOH	461	0.002%
H2O	12	2.987%		NH3	111	0.001%
CH4	6 3	1.381%		H2O2	231	0.001%
CH4	61	0.916%		NO2	101	< 0.001%
HNO3	121	0.252%		OH	131	< 0.001%
$\operatorname{Solar}(A)$		0.230%		ClO	181	< 0.001%
Solar-sim		0.016%		HOCL	211	< 0.001%
SO2	91	0.090%		COF2	361	< 0.001%
CCl2F2	321	0.081%		H2S	471	$<\!0.001\%$

HDO, Kiruna, $\varphi = 71.68^{\circ}$, OPD=257cm, FoV=4.06mrad, boxcar apod.

Wavenumber ν in cm^{-1}

investigated species line position(s) ν_0 lower state energy E''_{lst} retrieved TCA, information content temperature dependence of the TCA location, date, solar zenith angle spectral interval fitted			: HDO : $1193.5135 c$: $872.8 cm^{-1}$: $4.28E+21 n$: $-1.615\%/K$: Kiruna, $15/$: $1193.270 -$	m^{-1} nolec/cm ² , 23 (trop), +0.00 /Mar/97, 71 1193.780 cm	37.9 4%/K (strat) .68° -1
Molecule	iCode	Absorption	Molecule	iCode	Absorption
N2O	41	48.729%	CCl2F2	321	0.039%
HDO	491	29.256%	H2O2	231	0.003%
O3	31	13.192%	COF2	361	0.002%
$\operatorname{Solar}(A)$		1.053%	NO2	101	0.001%
$\operatorname{Solar-sim}$		1.054%	NH3	111	0.001%
CH4	61	0.915%	HOCL	211	0.001%
HNO3	121	0.731%	HCOOH	461	0.001%
CH4	6 3	0.633%	OH	131	< 0.001%
H2O	11	0.452%	ClO	181	< 0.001%
F142B	611	0.167%	N2O5	261	$<\!0.001\%$
SO2	91	0.052%	H2S	471	$<\!0.001\%$

 CH_3D , Kiruna, $\varphi=71.68^o$, OPD=257cm, FoV=4.06mrad, boxcar apod.

Wavenumber ν in cm^{-1}

investigated species line position(s) ν_0 lower state energy E''_{lst} retrieved TCA, information content temperature dependence of the TCA			:	$CH_3D(=CH_4(i3))$ 1199.4936, 1199.9945 cm^{-1} 116.4, 251.3 cm^{-1} 4.01E+19 $molec/cm^2$, 4.3, 4.6 -0.107%/K (trop), -0.101%/K (strat) Kiruna, 15/Mar/97, 71.68°		
spectral inte	te, solar zer erval fitted	lith angle	:	Kiruna, $15/$ 1199.220 – 1	$1200.450 \ cm$	-1
Molecule	iCode	Absorption		Molecule	iCode	Absorption
N2O	41	22.481%		SO2	91	0.038%
CH4	61	14.842%		COF2	361	0.007%
O3	31	9.964%		H2O2	231	0.006%
H2O	11	4.690%		HOCL	211	0.004%
CH3D	6 3	1.909%		NO2	101	0.001%
HDO	491	0.773%		NH3	111	0.001%
HNO3	121	0.646%		HCOOH	461	0.001%
$\operatorname{Solar}(A)$	—	0.617%		H2S	471	0.001%
Solar-sim	—	0.710%		OH	131	< 0.001%
F142B	611	0.062%		ClO	181	< 0.001%
CCl2F2	321	0.041%		N2O5	261	${<}0.001\%$

The spectroscopic line data of CH_4 at $1199.874 cm^{-1}$ is inconsistent with observations.

 CH_4 , Kiruna, $\varphi = 71.68^o$, OPD=257cm, FoV=4.06mrad, boxcar apod.

Wavenumber ν in cm^{-1}

investigated	species		:	$CH_4, (N_2O)$					
line position	(s) ν_0		:	1202.4210, (1202.4210, (1202.0263) cm^{-1}				
lower state e	energy E_{lst}''		:	1096.1, (620.	1096.1, (620.6) cm^{-1}				
retrieved TC	CA, informa	tion content	:	3.35E+19, (3)	5.52E+18) mo	$lec/cm^2, 264.7, (77.3)$			
temperature	dependenc	e of the TCA	:	-2.228, (-1.42)%/K (trop),	314, $(145)%/K$ (strat)			
location, dat	e, solar zen	ith angle	:	Kiruna, 15/	Mar/97, 71.	68 ^o			
spectral interval fitted			:	1201.820 - 1	$202.605 \ cm^{-1}$	-1			
Molecule	iCode	Absorption		Molecule	iCode	Absorption			
CH4	61	40.821%		H2O2	231	0.011%			
N2O	41	11.979%		COF2	361	0.008%			
O3	31	7.255%		HOCL	211	0.006%			
$\operatorname{Solar}(A)$		1.332%		NO2	101	0.001%			
Solar-sim		0.983%		N2O5	261	0.001%			
CH3D	531	0.961%		H2S	471	0.001%			
H2O	11	0.821%		CO2	2 3	< 0.001%			
CH4	6 2	0.654%		NH3	111	< 0.001%			
HNO3	121	0.534%		OH	131	< 0.001%			
HDO	491	0.070%		ClO	181	< 0.001%			
F142B	611	0.070%		CCl2F2	321	< 0.001%			
SO2	91	0.030%		HCOOH	461	< 0.001%			

 CH_3D , Kiruna, $\varphi = 71.68^{\circ}$, OPD=257cm, FoV=4.06mrad, boxcar apod.

 H_2 $^{18}O,$ Kiruna, $\varphi{=}71.68^o,$ OPD=257cm, FoV=4.06mrad, boxcar apod.

HDO, Kiruna, $\varphi = 71.68^{\circ}$, OPD=257cm, FoV=4.06mrad, boxcar apod.

investigated species line position(s) ν_0 lower state energy E''_{lst} retrieved TCA, information content temperature dependence of the TCA location, date, solar zenith angle			: HDO : $1206.0199 cr$: $709.2 cm^{-1}$: $4.36E+21 m$: $-1.058\%/K$ (: Kiruna, $15/2$	n^{-1} olec/cm ² , 15 trop), -0.016 Mar/97, 71	52.8 %/K (strat) .68°
spectral inte	erval fitted	_	: 1205.430 - 1	$206.800 \ cm$	-1
Molecule	iCode	Absorption	Molecule	iCode	Absorption
HDO	491	33.932%	H2O2	231	0.019%
CH4	61	14.128%	HOCL	211	0.013%
N2O	41	7.037%	NO2	101	0.001%
O3	31	6.998%	NH3	111	0.001%
CH4	6 2	1.582%	N2O5	261	0.001%
HNO3	121	1.358%	H2S	471	0.001%
CH4	6 3	1.351%	CO2	2 3	< 0.001%
H2O	11	0.781%	OH	131	< 0.001%
$\operatorname{Solar}(A)$	—	0.180%	ClO	181	< 0.001%
Solar-sim	—	< 0.001%	ClONO2	271	< 0.001%
F142B	611	0.051%	CCl2F2	321	< 0.001%
SO2	91	0.025%	HCOOH	461	< 0.001%
COF2	361	0.021%			

 $N_2O(i4)$, Kiruna, $\varphi=71.68^o$, OPD=257cm, FoV=4.06mrad, boxcar apod.

Wavenumber ν in cm^{-1}

Wavenumber ν in cm^{-1}

investigated line position lower state of retrieved TO temperature location, day spectral inte	species	tion content e of the TCA nith angle	: $N_2O(i4)$: $1227.9559 \ cm^{-1}$: $218.3 \ cm^{-1}$: $5.26E+18 \ m^{-1}$: $-0.213\%/K$ (: Kiruna, $15/2$: $1227.775 - 1$	n^{-1} olec/cm ² , 3' trop), -0.035 Mar/97, 71 228.210 cm	7.6 5%/K (strat) $.68^{o}$ -1
Molecule	iCode	Absorption	Molecule	iCode	Absorption
CH4	61	37.537%	HOCL	211	0.080%
N2O	4 4	5.874%	F142B	611	0.019%
CO2	2 3	2.276%	ClONO2	271	0.009%
H2O	11	2.118%	N2O5	261	0.004%
N2O	41	1.827%	SO2	91	0.003%
HDO	491	1.753%	NO2	101	0.001%
O3	31	0.763%	H2S	471	0.001%
COF2	361	0.386%	NH3	111	< 0.001%
$\operatorname{Solar}(A)$		0.212%	OH	131	< 0.001%
Solar-sim		0.015%	CHF2Cl	421	< 0.001%
HNO3	121	0.141%	HCOOH	461	< 0.001%
H2O2	231	0.129%			

 N_2O , Kiruna, $\varphi = 71.68^{\circ}$, OPD=257cm, FoV=4.06mrad, boxcar apod.

Wavenumber ν in cm^{-1}

Wavenumber ν in cm^{-1}

investigated species line position(s) ν_0 lower state energy E''_{lst} retrieved TCA, information content temperature dependence of the TCA spectral interval fitted			::	$N_2O(i4), (0)$ 1231.3564, 150.3, 135.3 5.89E+18, 568, (733) 1231.000 -	$CH_4(i2))$ 1232.1995, (1 3, (575.3) cm (3.23E+19) mo)%/K (trop), - 1232.307 cm	231.4358) cm^{-1} -1 lec/cm^2 , 66.8, (87.8) +.031, (068)%/K (strat) -1
Molecule	iCode	Absorption		Molecule	iCode	Absorption
CH4	61	59.745%		Solar-sim		0.014%
CH4	6 2	11.002%		HOCL	211	0.086%
N2O	44	7.961%		HNO3	121	0.035%
HDO	491	6.655%		F142B	611	0.023%
N2O	41	5.680%		ClONO2	271	0.014%
CO2	2 3	5.611%		N2O5	261	0.011%
H2O	11	5.070%		SO2	91	0.002%
CH4	6 3	1.100%		NO2	101	0.001%
N2O	4 3	0.739%		NH3	111	0.001%
COF2	361	0.691%		H2S	471	0.001%
O3	31	0.630%		OH	131	< 0.001%
H2O2	231	0.209%		HCOOH	461	$<\!0.001\%$
$\operatorname{Solar}(A)$	—	0.191%				

 COF_2 , Kiruna, $\varphi = 71.68^{\circ}$, OPD=257cm, FoV=4.06mrad, boxcar apod.

Wavenumber ν in cm^{-1}

spectral inte	rval fitted	:	1230.797 - 1	$1230.797 - 1231.310 \ cm^{-1}$			
Molecule	iCode	Absorption	Molecule	iCode	Absorption		
CH4	61	21.149%	H2O2	231	0.179%		
CH4	6 2	11.002%	HOCl	211	0.086%		
N2O	44	7.422%	HNO3	121	0.034%		
N2O	41	4.309%	F142B	611	0.021%		
CO2	2 3	4.209%	ClONO2	271	0.012%		
CH4	6 3	1.100%	N2O5	261	0.008%		
COF2	361	0.691%	SO2	91	0.002%		
O3	31	0.563%	NO2	101	0.001%		
HDO	491	0.535%	NH3	111	0.001%		
H2O	11	0.507%	H2S	471	0.001%		
N2O	4 3	0.500%	OH	131	< 0.001%		
$\operatorname{Solar}(A)$	_	0.191%	HCOOH	461	< 0.001%		
Solar-sim		< 0.001%					

 N_2O , Kiruna, $\varphi = 71.68^{\circ}$, OPD=257cm, FoV=4.06mrad, boxcar apod.

 COF_2 , Kiruna, $\varphi = 71.68^{\circ}$, OPD=257cm, FoV=4.06mrad, boxcar apod.

Wavenumber ν in cm^{-1}

Wavenumber ν in cm^{-1}

investigated species line position(s) ν_0 lower state energy E''_{lst} retrieved TCA, information content temperature dependence of the TCA			: : : :	COF_2 , (CH_4) 1233.9731*), 102.8, 92.5, 3.18E+14, (3 - 254 (957))	$_{4}(i2))$ $1234.4356^{*)}$ $(575.3) \ cm^{-1}$ $3.22E+19) \ max^{20}/K \ (trop)$, (1234.2262) cm^{-1} $blec/cm^2$, 4.3, 4.0, (142.0)			
spectral inte	erval fitted		:	1233.900 - 1	$1233.900 - 1234.570 \ cm^{-1}$				
Molecule	iCode	Absorption	I	Molecule	iCode	Absorption			
CH4	61	31.012%		HOCL	211	0.102%			
CH4	6 2	18.125%		H2O	11	0.087%			
N2O	41	9.660%		F142B	611	0.026%			
N2O	4 4	8.213%		HNO3	121	0.019%			
CO2	2 3	8.205%		N2O5	261	0.016%			
N2O	4 3	1.071%		ClONO2	271	0.016%			
COF2	361	0.604%		NO2	101	0.002%			
CH4	6 3	0.510%		H2S	471	0.002%			
O3	31	0.452%		SO2	91	0.001%			
$\operatorname{Solar}(A)$		0.400%		NH3	111	< 0.001%			
$\operatorname{Solar-sim}$		0.404%		OH	131	< 0.001%			
H2O2	231	0.260%		HCOOH	461	$<\!0.001\%$			
HDO	491	0.243%							

 N_2O , Kiruna, $\varphi = 71.68^{\circ}$, OPD=257cm, FoV=4.06mrad, boxcar apod.

SO2

NH3

OH

H2S

< 0.001%

< 0.001%

< 0.001%

111

131

471

0.556%

0.554%

0.210%

231

361

H2O2

COF2

Solar(A)

 N_2O , Kiruna, $\varphi = 71.68^{\circ}$, OPD=257cm, FoV=4.06mrad, boxcar apod.

Wavenumber ν in cm^{-1}

spectral mo	ervar mueu		. 1200.000
Molecule	iCode	Absorption	Molecule
N2O	41	99.987%	Solar(A)
CH4	6 2	56.152%	Solar-sim
CH4	61	24.156%	HOCL
H2O	11	21.372%	HNO3
CO2	2 3	13.783%	O3
N2O	4 3	13.239%	N2O5
N2O	4 4	8.623%	ClONO2

6.605%

2.404%

1.601%

1.183%

0.480%

0.422%

0.397%

42

491

45

24

361

311

231

N2O

HDO

N2O

CO2

CF4

H2O2

COF2

NO2

C2H2

F142B

SO2

NH3

OH

H2S

261

271

101

401

611

91

111

131

471

0.023%

0.005%

0.003%

0.001%

0.001%

< 0.001%

< 0.001%

< 0.001%

< 0.001%

 CF_4 , Kiruna, $\varphi = 71.68^{\circ}$, OPD=257cm, FoV=4.06mrad, boxcar apod.

Wavenumber ν in cm^{-1}

Wavenumber ν in cm^{-1}

investigated species			:	$CF_4 (= CFC - 14)$				
line position(s) ν_0			:	1285.0350^{*} , 1285.1075^{*} , 1285.3375^{*} cm^{-1}				
lower state energy E_{lst}''			:	typ. 114.0 to 281.0 cm^{-1}				
retrieved TCA, information content			:	$1.92E+15 \ molec/cm^2, \ 7.2$				
temperature dependence of the TCA			:	-2.173%/K (trop), $-0.529%/K$ (strat)				
location, date, solar zenith angle			:	Kiruna, 15/Mar/97, 71.68°				
spectral interval fitted			:	$1284.800 - 1285.475 \ cm^{-1}$				
Molecule	iCode	Absorption		Molecule	iCode	Absorption		
N2O	41	97.534%		CO2	24	1.496%		
H2O	11	61.429%		CLONO2	271	1.114%		
CH4	61	24.437%		N2O	45	0.838%		
CH4	6 2	21.200%		H2O2	231	0.446%		
HDO	491	19.601%		C2H2	401	0.444%		
$\mathbf{CF4}$	311	17.860%		$\operatorname{Solar}(A)$		0.231%		
N2O	4 3	11.027%		Solar-sim		0.043%		
N2O	4 2	8.106%		NO2	101	0.007%		
CO2	2 3	7.434%		COF2	361	0.005%		
HNO3	121	2.676%		HOCL	211	0.001%		
H2O	12	2.316%		CHF2CL	421	< 0.001%		
H2O	1 3	1.642%		H2S, NH3, O	H, N2O5	< 0.001%		

 HNO_3 , Kiruna, $\varphi = 71.68^o$, OPD=257cm, FoV=4.06mrad, boxcar apod.

176

Wavenumber ν in cm^{-1}

investigated species line position(s) ν_0 lower state energy E''_{lst} retrieved TCA, information content temperature dependence of the TCA spectral interval fitted			$\begin{array}{rrrr} & HNO_3, (HI) \\ & 1325.3160^{*)}, \\ & 317.3, (265.2) \\ & 3.60E+16, (400) \\ &029, (079)^{'} \\ & 1324.500 - 1 \end{array}$	$HNO_{3}, (HDO)$ $1325.3160^{*}), (1324.8088) cm^{-1}$ $317.3, (265.2) cm^{-1}$ $3.60E+16, (4.10E+21) molec/cm^{2}, 12.4, (49.5)$ $029, (079)\%/K (trop), +.341, (+.054)\%/K (strat)$ $1324.500 - 1326.200 cm^{-1}$			
Molecule	iCode	Absorption	Molecule	iCode	Absorption		
H2O	11	91.073%	SO2	91	0.067%		
HDO	491	61.979%	NO2	101	0.015%		
CH4	61	34.935%	H2O2	231	0.012%		
HNO3	121	25.405%	ClONO2	271	0.011%		
N2O	41	13.915%	O3	31	0.009%		
CH4	6 2	9.231%	HCN	281	0.001%		
$\operatorname{Solar}(A)$		2.409%	H2S	471	0.001%		
Solar-sim		0.083%	NH3	111	< 0.001%		
C2H2	401	0.216%	OH	131	< 0.001%		
CHF2Cl	421	0.206%	HO2	221	< 0.001%		
CO2	2 3	0.117%	N2O5	261	$<\!0.001\%$		

The spectroscopic line data is inconsistent with observations, in particular around $1325.1 cm^{-1}$.

Wavenumber ν in cm^{-1}

Note: This is a retrieval from a **theoretical** spectrum. Unfortunately no observations were available due to optical bandfilter restrictions.

NO, Kiruna, $\varphi = 70.54^{\circ}$, OPD=257cm, FoV=2.39mrad, boxcar apod.

Wavenumber ν in cm^{-1}

investigated species line position(s) ν_0 lower state energy E''_{lst} retrieved TCA, information content temperature dependence of the TCA location, date, solar zenith angle spectral interval fitted			: NO : 1900.0706*) : 80.2, 80.3 c : 3.60E+15 r : -0.035%/K : Kiruna, 15 : 1899.880 -	(1, 1900.0816) m^{-1} $nolec/cm^2, 6$ (trop), +0.1 /Mar/97, 7 1900.150 cm	*) cm^{-1} 60.6 14%/K (strat) 0.54^{o} n^{-1}
Molecule	iCode	Absorption	Molecule	iCode	Absorption
CO2	21	37.616%	COF2	361	0.110%
$\operatorname{Solar}(A)$		27.271%	CH4	61	0.050%
Solar-sim		28.404%	COCLF	371	0.019%
H2O	11	16.641%	C2H2	401	0.001%
NO	81	7.790%	CO	51	< 0.001%
H2O	1 3	2.667%	NH3	111	< 0.001%
N2O	41	2.081%	OH	131	< 0.001%
O3	31	0.468%	HDO	491	$<\!0.001\%$
OCS	191	0.122%			

NO, Kiruna, $\varphi = 70.54^{\circ}$, OPD=257cm, FoV=2.39mrad, boxcar apod.

Wavenumber ν in cm^{-1}

investigated species line position(s) ν_0 lower state energy E''_{lst} retrieved TCA, information content temperature dependence of the TCA location, date, solar zenith angle spectral interval fitted			: : : : :	$\begin{array}{c} NO \\ 1903.1335^{*)} \\ 105.4 \ cm^{-1} \\ 3.52E{+}15 \ m \\ -0.018\%/K \\ \mathrm{Kiruna}, \ 15 \\ 1903.050 \ - \end{array}$	cm^{-1} nolec/cm ² , 4 (trop), +0.0 /Mar/97, 70 1903.260 cm	9.0 17%/K (strat) 0.54^{o} v^{-1}
Molecule	iCode	Absorption	1	Molecule	iCode	Absorption
CO2	21	97.391%		COF2	361	0.126%
H2O	11	68.030%		OCS	191	0.118%
H2O	12	58.627%		COCLF	371	0.014%
$\operatorname{Solar}(A)$		27.125%		CH4	61	0.001%
Solar-sim		27.188%		C2H2	401	0.001%
H2O	13	8.048%		CO	51	< 0.001%
NO	81	7.559%		NH3	111	< 0.001%
CO2	2 3	1.431%		OH	131	< 0.001%
N2O	41	1.080%		HDO	491	$<\!0.001\%$
O3	31	0.581%				

NO, Kiruna, $\varphi{=}70.54^o,$ OPD=257cm, FoV=2.39mrad, boxcar apod.

Wavenumber ν in cm^{-1}

investigated species line position(s) ν_0 lower state energy E''_{lst} retrieved TCA, information content temperature dependence of the TCA location, date, solar zenith angle spectral interval fitted			: : : :	$\begin{array}{c} NO \\ 1912.7947^{*)} \\ 326.0 \ cm^{-1} \\ 3.56E{+}15 \ m \\ -0.022\%/K \\ {\rm Kiruna, \ 15}_{/} \\ 1912.742 \ - \end{array}$	cm^{-1} nolec/cm ² , 2 (trop), -0.44 /Mar/97, 70 1912.850 cm	29.8 $3\%/{ m K}~{ m (strat)}$ 0.54^o n^{-1}
Molecule	iCode	Absorption		Molecule	iCode	Absorption
H2O	11	52.022%		N2O	41	0.036%
CO2	21	33.804%		OCS	191	0.025%
$\operatorname{Solar}(A)$	—	28.150%		CH4	61	0.005%
Solar-sim		27.606%		CO	51	< 0.001%
H2O	13	28.125%		NH3	111	< 0.001%
NO	81	7.277%		OH	131	< 0.001%
H2O	1 2	1.057%		COCLF	371	< 0.001%
O3	31	0.294%		C2H2	401	< 0.001%
COF2	361	0.104%		HDO	491	< 0.001%

 COF_2 , Kiruna, $\varphi = 70.54^o$, OPD=257cm, FoV=2.39mrad, boxcar apod.

Wavenumber ν in cm^{-1}

investigated species line position(s) ν_0 lower state energy E''_{lst} retrieved TCA, information content temperature dependence of the TCA location, date, solar zenith angle spectral interval fitted			: : : : :	COF_2 1951.5865 ^{*)} 63.4, 70.6 c 3.96E+14 r -0.019%/K Kiruna, 15 1951.500 -	, 1951.9479° m^{-1} $nolec/cm^2$, 7 (trop), -0.082 /Mar/97, 70 1952.040 cm	$^{(s)} cm^{-1}$.7, 6.9 2%/K (strat) 0.54^{o} a^{-1}
Molecule	iCode	Absorption		Molecule	iCode	Absorption
H2O	11	40.130%		N2O	41	0.034%
CO2	21	39.278%		CH4	61	0.001%
$\operatorname{Solar}(A)$		23.694%		C2H2	401	0.001%
Solar-sim		23.994%		CO	51	$<\!0.001\%$
COF2	361	0.663%		NH3	111	$<\!0.001\%$
O3	31	0.441%		OH	131	< 0.001%
NO	81	0.043%		HI	171	< 0.001%

 COF_2 , Kiruna, $\varphi = 70.54^{\circ}$, OPD=257cm, FoV=2.39mrad, boxcar apod.

Wavenumber ν in cm^{-1}

Wavenumber ν in cm^{-1}

investigated species line position(s) ν_0 lower state energy E''_{lst} retrieved TCA, information content temperature dependence of the TCA location, date, solar zenith angle spectral interval fitted			$\begin{array}{llllllllllllllllllllllllllllllllllll$	${{8}^{*)}} cm^{-1}$ 4 molec/cm ² , 8 K (trop), -0.31 15/Mar/97, 70 - 1952.775 cm	$3.9 \\ 7\%/{ m K} ~{ m (strat)} \\ 0.54^o \\ n^{-1}$
Molecule	iCode	Absorption	Molecule	iCode	Absorption
CO2	21	47.427%	CH4	61	0.001%
H2O	11	30.773%	C2H2	401	0.001%
$\operatorname{Solar}(A)$		29.621%	CO	51	< 0.001%
Solar-sim		29.347%	NH3	111	< 0.001%
O3	31	0.728%	OH	131	< 0.001%
COF2	361	0.669%	HI	171	< 0.001%
N2O	41	0.039%	OCS	193	< 0.001%
NO	81	0.017%			

 H_2O , Kiruna, $\varphi = 70.54^{\circ}$, OPD=257cm, FoV=2.39mrad, boxcar apod.

Wavenumber ν in cm^{-1}

investigated species line position(s) ν_0 lower state energy E''_{lst} retrieved TCA, information content temperature dependence of the TCA location, date, solar zenith angle spectral interval fitted			$\begin{array}{rrrr} & H_2O \\ & 1959.6324 \\ & 446.5 \ cm^{-1} \\ & 5.99E+21 \\ & -0.599\%/H \\ & \text{Kiruna, 1} \\ & 1959.000 \end{array}$	cm^{-1} -1 $molec/cm^2$, 1 ζ (trop), +0.1 5/Mar/97, 7 - 1960.200 cm	35.2 $28\%/{ m K}~{ m (strat)}$ 0.54^o n^{-1}
Molecule	iCode	Absorption	Molecule	iCode	Absorption
H2O	11	100.000%	NO	81	0.009%
CO2	21	53.800%	CH4	61	0.001%
$\operatorname{Solar}(A)$		26.751%	C2H2	401	0.001%
Solar-sim		26.657%	CO	51	< 0.001%
H2O	1 3	5.655%	NH3	111	< 0.001%
O3	31	0.831%	OH	131	< 0.001%
COF2	361	0.472%	HI	171	< 0.001%
N2O	41	0.050%	OCS	19 3	< 0.001%

OCS, Kiruna, $\varphi{=}70.54^o,$ OPD=257cm, FoV=2.39mrad, boxcar apod.

Wavenumber ν in cm^{-1}

investigated species line position(s) ν_0 lower state energy E''_{lst} retrieved TCA, information content temperature dependence of the TCA location, date, solar zenith angle spectral interval fitted			: : : : :	$\begin{array}{c} OCS \\ 2045.5785 & c \\ 285.1 & cm^{-1} \\ 9.87E{+}15 & r \\ -0.531\%/K \\ \text{Kiruna, } 15 \\ 2045.477 & - \end{array}$	cm ⁻¹ nolec/cm ² , 6 (trop), -0.03 /Mar/97, 7 2045.687 cn	57.2 0%/K (strat) 0.54^{o} n^{-1}
Molecule	iCode	Absorption		Molecule	iCode	Absorption
CO2	21	74.621%		OCS	19 2	0.821%
H2O	11	22.838%		CO	51	0.250%
$\operatorname{Solar}(A)$		21.623%		N2O	41	$<\!0.001\%$
Solar-sim		22.149%		CH4	61	$<\!0.001\%$
O3	31	19.651%		NO	81	$<\!0.001\%$
OCS	191	15.356%		NH3	111	< 0.001%
CO	5 2	12.825%		OH	131	< 0.001%
CO2	2 2	11.402%		HI	171	< 0.001%
CO2	2 3	4.051%		C2H2	401	< 0.001%
CO2	24	2.628%		N2	411	< 0.001%
O3	3 3	1.511%				

OCS, Kiruna, $\varphi = 70.54^{\circ}$, OPD=257cm, FoV=2.39mrad, boxcar apod.

Wavenumber ν in cm^{-1}

Wavenumber ν in cm^{-1}

investigated species line position(s) ν_0 lower state energy E''_{lst} retrieved TCA, information content temperature dependence of the TCA location, date, solar zenith angle spectral interval fitted			:::::::::::::::::::::::::::::::::::::::	$\begin{array}{c} OCS \\ 2051.3313 \ c \\ 131.8 \ cm^{-1} \\ 9.55E{+}15 \ m \\ +0.032\%/K \\ \text{Kiruna, } 15/ \\ 2051.152 \ - \end{array}$	m^{-1} nolec/cm ² , 1 (trop), -0.0 /Mar/97, 70 2051.490 cm	80.4 $16\%/{ m K}~{ m (strat)}$ 0.54^o \imath^{-1}
Molecule	iCode	Absorption		Molecule	iCode	Absorption
CO2	21	44.347%		OCS	19 2	1.256%
CO	51	41.604%		O3	3 3	0.713%
$\operatorname{Solar}(A)$	—	31.227%		N2O	41	0.001%
Solar-sim		30.918%		CH4	61	$<\!0.001\%$
OCS	191	24.354%		NO	81	$<\!0.001\%$
O3	31	16.886%		NH3	111	$<\!0.001\%$
CO2	2 2	9.011%		OH	131	$<\!0.001\%$
H2O	11	5.477%		HI	171	< 0.001%
CO2	2 3	4.579%		C2H2	401	$<\!0.001\%$
CO2	24	2.424%		N2	411	$<\!0.001\%$

OCS, Kiruna, $\varphi{=}70.54^o,$ OPD=257cm, FoV=2.39mrad, boxcar apod.

Wavenumber ν in cm^{-1}

investigated species line position(s) ν_0 lower state energy E''_{lst} retrieved TCA, information content temperature dependence of the TCA location, date, solar zenith angle spectral interval fitted			: : : : :	$\begin{array}{c} OCS \\ 2053.1714 & o \\ 93.7 & cm^{-1} \\ 1.04E + 16 & r \\ +0.005\%/F \\ Kiruna, & 15 \\ 2053.080 & - \end{array}$	cm ⁻¹ nolec/cm ² , 7 X (trop), -0.1 /Mar/97, 70 2053.350 cn	71.9 54%/K (strat) 0.54^{o} n^{-1}
Molecule	iCode	Absorption		Molecule	iCode	Absorption
CO2	21	70.424%		H2O	11	0.507%
H2O	12	37.423%		CO	51	0.037%
OCS	191	24.961%		N2O	41	0.001%
O3	31	21.463%		CH4	61	$<\!0.001\%$
$\operatorname{Solar}(A)$		20.355%		NO	81	< 0.001%
Solar-sim		20.504%		NH3	111	$<\!0.001\%$
CO2	2 3	2.511%		OH	131	$<\!0.001\%$
CO2	24	1.977%		HI	171	$<\!0.001\%$
O3	3 3	1.244%		C2H2	401	$<\!0.001\%$
OCS	192	1.242%		N2	411	< 0.001%
CO2	2 2	0.662%				

OCS, Kiruna, $\varphi = 70.54^{\circ}$, OPD=257cm, FoV=2.39mrad, boxcar apod.

Wavenumber ν in cm^{-1}

Wavenumber ν in cm^{-1}

investigated species line position(s) ν_0 lower state energy E''_{lst} retrieved TCA, information content temperature dependence of the TCA location, date, solar zenith angle spectral interval fitted			: : : : :	OCS 2054.0778, 1 77.1, 69.4 c 8.56E+15 m -0.192%/K Kiruna, 15/ 2053.980 -	2054.5271 c m^{-1} nolec/ cm^2 , 9 (trop), -0.20 /Mar/97, 70 2054.666 cm	m^{-1} 2.5, 110.73 9%/K (strat) 0.54° i^{-1}
Molecule	iCode	Absorption		Molecule	iCode	Absorption
CO2	21	100.000%		OCS	19 2	1.231%
OCS	191	25.044%		H2O	1 3	0.829%
O3	31	20.615%		CO	51	0.457%
CO	52	18.500%		N2O	41	0.001%
H2O	11	6.487%		NO	81	0.001%
H2O	12	6.406%		CH4	61	< 0.001%
$\operatorname{Solar}(A)$	_	6.148%		NH3	111	< 0.001%
Solar-sim		4.469%		OH	131	< 0.001%
CO	53	4.097%		HI	171	< 0.001%
CO2	2 3	2.690%		C2H2	401	$<\!0.001\%$
CO2	24	1.793%		N2	411	< 0.001%
O3	3 3	1.545%				

OCS, Kiruna, $\varphi = 70.54^{\circ}$, OPD=257cm, FoV=2.39mrad, boxcar apod.

Wavenumber ν in cm^{-1}

Wavenumber ν in cm^{-1}

investigated species line position(s) ν_0 lower state energy E''_{lst} retrieved TCA, information content temperature dependence of the TCA location, date, solar zenith angle spectral interval fitted			: OCS : 2055.8606 : 48.7 cm^{-1} : 9.38E+15 : -1.312%/H : Kiruna, 1 : 2055.632	cm^{-1} molec/cm ² , 2 χ (trop), -0.52 5/Mar/97, 7 - 2055.980 cr	126.6 24%/K (strat) 0.54^{o} m^{-1}
Molecule	iCode	Absorption	Molecule	iCode	Absorption
CO2	21	100.000%	H2O	11	0.707%
CO	51	56.873%	O3	32	0.544%
$\operatorname{Solar}(A)$		31.369%	N2O	41	0.001%
Solar-sim		32.386%	CH4	61	$<\!0.001\%$
OCS	191	24.073%	NO	81	< 0.001%
O3	31	19.668%	NH3	111	< 0.001%
O3	3 3	2.776%	OH	131	< 0.001%
CO2	2 3	2.712%	HI	171	< 0.001%
CO2	24	1.397%	C2H2	401	< 0.001%
OCS	192	1.167%	N2	411	< 0.001%

CO, Kiruna, $\varphi = 70.54^{\circ}$, OPD=257cm, FoV=2.39mrad, boxcar apod.

Wavenumber ν in cm^{-1}

Wavenumber ν in cm^{-1}

investigated species line position(s) ν_0 lower state energy E''_{lst} retrieved TCA, information content temperature dependence of the TCA location, date, solar zenith angle spectral interval fitted			:::::::::::::::::::::::::::::::::::::::	CO(i2) 2057.8575 c 202.1 cm ⁻¹ 2.35E+18 r -0.425%/K Kiruna, 15 2057.783 -	cm ⁻¹ nolec/cm ² , 9 (trop), -0.24 /Mar/97, 70 2057.930 cn	$9\%/{ m K}~{ m (strat)}$ 0.54^o v^{-1}
Molecule	iCode	Absorption		Molecule	iCode	Absorption
CO2	21	100.000%		OCS	19 2	0.983%
OCS	191	21.286%		O3	3 2	0.877%
CO	52	20.904%		CO	51	0.069%
O3	31	20.245%		N2O	41	0.001%
$\operatorname{Solar}(A)$	—	17.241%		CH4	61	$<\!0.001\%$
Solar-sim		18.188%		NO	81	< 0.001%
CO	53	4.595%		NH3	111	< 0.001%
H2O	11	2.863%		OH	131	$<\!0.001\%$
CO2	2 3	2.451%		HI	171	$<\!0.001\%$
O3	3 3	2.107%		C2H2	401	$<\!0.001\%$
CO2	24	0.988%		N2	411	< 0.001%

CO, Kiruna, $\varphi = 70.54^{\circ}$, OPD=257cm, FoV=2.39mrad, boxcar apod.

Wavenumber ν in cm^{-1}

Wavenumber ν in cm^{-1}

investigated species line position(s) ν_0 lower state energy E''_{lst} retrieved TCA, information content temperature dependence of the TCA location, date, solar zenith angle spectral interval fitted			: $CO(i2)$: $2069.6559 c$: $102.9 cm^{-1}$: $2.67E+18 r$: $+0.135\%/F$: Kiruna, 15 : $2069.550 -$	$\begin{array}{l} CO(i2) \\ 2069.6559 \ cm^{-1} \\ 102.9 \ cm^{-1} \\ 2.67\text{E}{+}18 \ molec/cm^2, \ 172.3 \\ +0.135\%/\text{K} \ (\text{trop}), \ +0.064\%/\text{K} \ (\text{strat}) \\ \text{Kiruna}, \ 15/\text{Mar}/97, \ 70.54^o \\ 2069.550 \ -2069.735 \ cm^{-1} \end{array}$		
Molecule	iCode	Absorption	Molecule	iCode	Absorption	
CO2	21	100.000%	H2O	1 2	0.780%	
O3	31	80.624%	CO	54	0.562%	
OCS	191	27.039%	O3	3 3	0.532%	
CO	52	25.796%	N2O	41	0.001%	
$\operatorname{Solar}(A)$		21.921%	CH4	61	< 0.001%	
Solar-sim		22.275%	NO	81	< 0.001%	
CO	51	7.310%	NH3	111	< 0.001%	
CO	53	5.107%	OH	131	< 0.001%	
H2O	11	2.085%	HI	171	< 0.001%	
O3	32	1.831%	C2H2	401	< 0.001%	
CO2	2 2	1.402%	N2	411	$<\!0.001\%$	
OCS	192	1.371%				

CO, Kiruna, $\varphi = 70.54^{\circ}$, OPD=257cm, FoV=2.39mrad, boxcar apod.

Wavenumber ν in cm^{-1}

investigated species line position(s) ν_0 lower state energy E''_{lst} retrieved TCA, information content temperature dependence of the TCA location, date, solar zenith angle spectral interval fitted			: CO : 2111.5430 (: $138.4 \ cm^{-1}$: $2.55E+18 \ r$: $+0.606\%/F$: Kiruna, 15 : $2110.675 -$	CO 2111.5430 cm^{-1} 138.4 cm^{-1} 2.55E+18 $molec/cm^2$, 220.8 +0.606%/K (trop), +0.106%/K (strat) Kiruna, 15/Mar/97, 70.54° 2110.675 - 2112.770 cm^{-1}		
Molecule	iCode	Absorption	Molecule	iCode	Absorption	
СО	51	100.000%	C2H2	401	0.001%	
O3	31	98.595%	N2O	41	< 0.001%	
CO2	21	80.338%	CH4	61	< 0.001%	
$\operatorname{Solar}(A)$		29.305%	NO	81	< 0.001%	
Solar-sim		28.660%	NH3	111	< 0.001%	
CO	5 2	23.407%	OH	131	< 0.001%	
H2O	11	3.600%	HI	171	< 0.001%	
O3	34	0.661%	N2	411	< 0.001%	
OCS	191	0.193%				

Wavenumber ν in cm^{-1}

Wavenumber ν in cm^{-1}

investigated species line position(s) ν_0 lower state energy E''_{lst} retrieved TCA, information content temperature dependence of the TCA location, date, solar zenith angle spectral interval fitted			:::::::::::::::::::::::::::::::::::::::	H_2O 2144.8085 o 1742.3 cm ⁻¹ 5.47E+21 r -1.529%/K Kiruna, 15 2144.100 -	cm^{-1} nolec/cm ² , 5 (trop), -0.00 /Mar/97, 70 2145.550 cm	5.2 5%/K (strat) 0.54^{o} v^{-1}
Molecule	iCode	Absorption		Molecule	iCode	Absorption
H2O	11	96.728%		N2O	41	0.386%
$\operatorname{Solar}(A)$	—	28.969%		OCS	191	0.001%
Solar-sim		28.967%		C2H2	401	0.001%
CO	5 2	14.827%		N2	411	0.001%
N2O	4 2	14.754%		CH4	61	$<\!0.001\%$
O3	31	8.399%		NO	81	$<\!0.001\%$
CO2	21	3.324%		NH3	111	$<\!0.001\%$
CO	51	1.914%		OH	131	< 0.001%
CO	5 3	1.791%		HBr	161	< 0.001%
CO	54	1.233%		HI	171	< 0.001%
H2O	12	0.812%		H2S	471	< 0.001%
CH4	6 3	0.720%				

 N_2O , Kiruna, $\varphi = 71.02^{\circ}$, OPD=257cm, FoV=2.39mrad, boxcar apod.

Wavenumber ν in cm^{-1}

investigated species line position(s) ν_0 lower state energy E''_{lst} retrieved TCA, information content temperature dependence of the TCA location, date, solar zenith angle spectral interval fitted			: : : :	$N_2O(i2)$ 2146.5160 cm ⁻¹ 469.9 cm ⁻¹ 5.75E+18 molec/cm ² , 213.1 -0.922%/K (trop), -0.112%/K (strat) Kiruna, 15/Mar/97, 71.02° 2146.200 - 2146.620 cm ⁻¹		
Molecule	iCode	Absorption		Molecule	iCode	Absorption
CO	51	74.656%		C2H2	401	0.001%
$\operatorname{Solar}(A)$	—	28.969%		CH4	61	$<\!0.001\%$
$\operatorname{Solar-sim}$		28.967%		NO	81	$<\!0.001\%$
N2O	4 2	16.936%		NH3	111	< 0.001%
H2O	11	11.621%		OH	131	< 0.001%
O3	31	9.083%		HBr	161	< 0.001%
CO2	21	2.279%		HI	171	< 0.001%
CO	5 3	1.791%		N2	411	< 0.001%
N2O	41	0.387%		H2S	471	$<\!0.001\%$
OCS	191	0.001%				

 N_2O , Kiruna, $\varphi = 71.02^{\circ}$, OPD=257cm, FoV=2.39mrad, boxcar apod.

Wavenumber ν in cm^{-1}

Wavenumber ν in cm^{-1}

investigated species line position(s) ν_0 lower state energy E''_{lst} retrieved TCA, information content temperature dependence of the TCA location, date, solar zenith angle spectral interval fitted			: : : : : :	$N_2O(i2)$ $2149.6423 \ cm^{-1}$ $389.5 \ cm^{-1}$ $5.81E+18 \ molec/cm^2, 143.6$ $-0.489\%/K \ (trop), -0.108\%/K \ (strat)$ Kiruna, 15/Mar/97, 71.02° $2149.380 - 2149.900 \ cm^{-1}$		
Molecule	iCode	Absorption		Molecule	iCode	Absorption
$\operatorname{Solar}(A)$		29.305%		CH4	61	$<\!0.001\%$
Solar-sim		28.120%		NO	81	$<\!0.001\%$
N2O	4 2	24.729%		NH3	111	$<\!0.001\%$
O3	31	9.169%		OH	131	$<\!0.001\%$
CO	51	8.058%		HBr	161	$<\!0.001\%$
CO	5 2	3.562%		HI	171	< 0.001%
H2O	11	2.346%		OCS	191	$<\!0.001\%$
CO2	21	1.916%		C2H2	401	$<\!0.001\%$
H2O	1 2	1.866%		N2	411	$<\!0.001\%$
CO	53	1.343%		H2S	471	$<\!0.001\%$
N2O	41	0.933%				

 N_2O , Kiruna, $\varphi = 71.02^o$, OPD=257cm, FoV=2.39mrad, boxcar apod.

Wavenumber ν in cm^{-1}

Wavenumber ν in cm^{-1}

investigated species line position(s) ν_0 lower state energy E''_{lst} retrieved TCA, information content temperature dependence of the TCA location, date, solar zenith angle spectral interval fitted			$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	4 cm ⁻¹ -1 8 molec/cm ² , 2 K (trop), -0.12 15/Mar/97, 7 - 2154.200 cr	208.7 27%/K (strat) 1.02^{o} n^{-1}
Molecule	iCode	Absorption	Molecule	iCode	Absorption
CO	51	41.643%	C2H2	401	0.001%
N2O	4 2	37.262%	N2	411	0.001%
$\operatorname{Solar}(A)$		29.344%	CH4	61	$<\!0.001\%$
Solar-sim		29.350%	NO	81	$<\!0.001\%$
H2O	11	12.230%	NH3	111	$<\!0.001\%$
O3	31	10.316%	OH	131	< 0.001%
CO	52	7.254%	HBr	161	< 0.001%
N2O	41	1.926%	HI	171	< 0.001%
CO2	21	1.736%	OCS	191	$<\!0.001\%$
N2O	4 3	1.124%	H2S	471	$<\!0.001\%$

CO, Kiruna, $\varphi = 70.54^{\circ}$, OPD=257cm, FoV=2.39mrad, boxcar apod.

Wavenumber ν in cm^{-1}

Wavenumber ν in cm^{-1}

investigated	species		:	$CO, (N_2O($	<i>i</i> 2))				
line position	n(s) ν_0		:	2158.2997,	(2157.6919)	cm^{-1}			
lower state	energy E_{lst}''		:	23.1, (212.0)	23.1, (212.0) cm^{-1}				
retrieved TO	CA, informa	ation content	:	2.55E + 18,	$(5.77E+18) \ m$	$nolec/cm^2, 571.8, (225)$			
temperature	e dependenc	e of the TCA	:	+.128, (52)	1)%/K (trop),047, (035) $\%/K$ (
location, da	te, solar zer	nith angle	:	Kiruna, 15	/Mar/97, 7	0.54^{o}			
spectral interval fitted			:	2157.507 -	$2159.144 \ cm$	n^{-1}			
Molecule	iCode	Absorption		Molecule	iCode	Absorption			
СО	51	100.000%		CO	54	0.775%			
N2O	4 2	51.936%		N2	411	0.019%			
H2O	11	43.783%		C2H2	401	0.001%			
$\operatorname{Solar}(A)$		31.109%		CH4	61	< 0.001%			
Solar-sim		31.308%		NO	81	< 0.001%			
O3	31	10.481%		NH3	111	< 0.001%			
N2O	41	8.152%		OH	131	< 0.001%			
CO	5 2	5.228%		HBr	161	< 0.001%			
CO2	21	2.903%		HI	171	< 0.001%			
N2O	4 3	2.782%		OCS	191	$<\!0.001\%$			
CH4	6 3	0.936%		H2S	471	< 0.001%			

 N_2O , Kiruna, $\varphi = 71.02^{\circ}$, OPD=257cm, FoV=2.39mrad, boxcar apod.

Wavenumber ν in cm^{-1}

Wavenumber ν in cm^{-1}

investigated species line position(s) ν_0 lower state energy E''_{lst} retrieved TCA, information content temperature dependence of the TCA location, date, solar zenith angle spectral interval fitted			: : : :	$N_2O(i2)$ 2160.6023 c 159.2 cm ⁻¹ 5.65E+18 n -0.335%/K Kiruna, 15/ 2160.100 -	m^{-1} nolec/cm ² , 3 (trop), -0.02' /Mar/97, 72 2161.068 cm	64.2 7%/K (strat) 1.02^{o} n^{-1}
Molecule	iCode	Absorption		Molecule	iCode	Absorption
CO	51	100.000%		CO	54	0.793%
N2O	42	54.661%		CO	53	0.510%
$\operatorname{Solar}(A)$	—	31.109%		N2	411	0.224%
Solar-sim	—	31.308%		C2H2	401	0.001%
O3	31	10.543%		CH4	61	$<\!0.001\%$
H2O	11	9.441%		NO	81	< 0.001%
N2O	41	8.340%		NH3	111	$<\!0.001\%$
CO	5 2	3.861%		OH	131	$<\!0.001\%$
N2O	4 3	3.469%		HI	171	$<\!0.001\%$
CO2	21	2.969%		OCS	191	< 0.001%
CH4	6 3	0.958%		H2S	471	${<}0.001\%$

 N_2O , Kiruna, $\varphi = 71.02^{\circ}$, OPD=257cm, FoV=2.39mrad, boxcar apod.

Wavenumber ν in cm^{-1}

Wavenumber ν in cm^{-1}

investigated species line position(s) ν_0 lower state energy E''_{lst} retrieved TCA, information content temperature dependence of the TCA location, date, solar zenith angle spectral interval fitted			: : : :	N_2O 2168.7416 c 1242.9 cm 5.53E+18 n -2.916%/K Kiruna, 15/ 2168.485 - 2	m^{-1} 1 1 1 1 1 1 1 1	$78.1 \\ 6\%/{ m K} \ ({ m strat}) \\ 1.02^o \\ \imath^{-1}$
Molecule	iCode	Absorption		Molecule	iCode	Absorption
N2O	42	58.710%		N2O	44	0.500%
N2O	41	46.641%		N2	411	0.006%
CO	51	40.873%		CH4	61	0.001%
$\operatorname{Solar}(A)$		30.452%		C2H2	401	0.001%
Solar-sim		30.477%		NO	81	< 0.001%
N2O	4 3	11.881%		NH3	111	< 0.001%
O3	31	11.055%		OH	131	< 0.001%
H2O	11	10.492%		HBr	161	$<\!0.001\%$
CO2	21	1.341%		HI	171	$<\!0.001\%$
CO	5 2	1.287%		H2S	471	< 0.001%
CH4	6 3	0.901%				

 N_2O , Kiruna, $\varphi = 71.02^{\circ}$, OPD=257cm, FoV=2.39mrad, boxcar apod.

Wavenumber ν in cm^{-1}

Wavenumber ν in cm^{-1}

investigated species line position(s) ν_0 lower state energy E''_{lst} retrieved TCA, information content temperature dependence of the TCA location, date, solar zenith angle spectral interval fitted			: : : :	N_2O 2184.4585, 2 906.2, 905.6 5.61E+18 <i>n</i> -2.003%/K Kiruna, 15/ 2184.240 - 2	2184.5118 cm cm^{-1} $nolec/cm^2$, 1 (trop), -0.26 /Mar/97, 72 2184.700 cm	m^{-1} 128.4, 1020.1 1%/K (strat) 1.02° i^{-1}
Molecule	iCode	Absorption		Molecule	iCode	Absorption
N2O	41	100.000%		CH4	6 3	0.676%
N2O	4 2	56.094%		CO2	21	0.536%
N2O	4 3	53.247%		N2	411	0.001%
O3	31	34.728%		CH4	61	$<\!0.001\%$
$\operatorname{Solar}(A)$	—	30.279%		NO	81	$<\!0.001\%$
Solar-sim	—	30.353%		NH3	111	$<\!0.001\%$
N2O	4 4	7.383%		OH	131	$<\!0.001\%$
CO	51	5.951%		HI	171	$<\!0.001\%$
H2O	11	3.668%		C2H2	401	$<\!0.001\%$
N2O	4 5	1.034%		H2S	471	< 0.001%

 N_2O , Kiruna, $\varphi = 71.02^{\circ}$, OPD=257cm, FoV=2.39mrad, boxcar apod.

Wavenumber ν in cm^{-1}

Wavenumber ν in cm^{-1}

investigated	species		:	$N_2O(i2), (I$	$V_2O)$				
line position	(s) ν_0		:	2185.6697,	(2186.0020)	cm^{-1}			
lower state e	energy E_{lst}''		:	37.7, (653.2)	$37.7, (653.2) \ cm^{-1}$				
retrieved TC	CA, informat	tion content	:	5.63E + 18,	(5.67E+18) m	$olec/cm^2, 266.0, (7)$	(33.3)		
temperature	dependence	e of the TCA	:	+3.707, (-1.	286)%/K (tro	(185)	$ m \acute{o}/K$ (strat)		
location, dat	e, solar zen	ith angle	:	Kiruna, 15	Kiruna, 15/Mar/97, 71.02°				
spectral interval fitted			:	2185.505 -	$2185.505 - 2186.010 \ cm^{-1}$				
Molecule	iCode	Absorption		Molecule	iCode	Absorption			
N2O	41	100.000%		N2O	4 5	1.317%			
N2O	4 2	58.478%		CO2	21	0.579%			
N2O	4 3	56.200%		CH4	61	0.001%			
O3	31	33.972%		C2H2	401	0.001%			
$\operatorname{Solar}(A)$		32.051%		NO	81	$<\!0.001\%$			
Solar-sim		31.262%		NH3	111	$<\!0.001\%$			
CO	51	21.766%		OH	131	$<\!0.001\%$			
N2O	4 4	9.835%		HBr	161	$<\!0.001\%$			
H2O	11	8.075%		HI	171	$<\!0.001\%$			
N2	411	1.772%		H2S	471	$<\!0.001\%$			

 N_2O , Kiruna, $\varphi = 71.02^{\circ}$, OPD=257cm, FoV=2.39mrad, boxcar apod.

Wavenumber ν in cm^{-1}

Wavenumber ν in cm^{-1}

investigated sp	oecies		:	$N_2O(i3), (N_2O)$				
line position(s) ν_0		:	$2187.8459, 2188.7560, (2188.1894) \ cm^{-1}$				
lower state end	ergy E_{lst}''		:	110.1, 97.2, (588.8) cm^{-1}				
retrieved TCA	, informati	ion content	:	$6.01e18, (5.68e18) \ molec/cm^2, 117.3, 145.27, (280.9)$				
temperature dependence of the TCA			:	008, $(-1.068)%/K$ (trop), $+.084$, $(109)%/K$ (strat)				
investigated sp	pecies, posi	tion	:	$N_2O(i2), 2187.9431, 2188.6875 \ cm^{-1}$				
lower state end	ergy E_{lst}''		:	$65.4, 76.2 \ cm^{-1}$				
retrieved TCA	., informati	ion content	:	$5.62E+18 \ molec/cm^2, \ 107.2, \ 122.7$				
temperature d	ependence	of the TCA	:	+.485%/K (trop), $+.030%/K$ (strat)				
Molecule	iCode	Absorption		Molecule iCode Absorption				

Molecule	iCode	Absorption	Molecule	iCode	Absorption
N2O	41	100.000%	N2O	4 5	1.939%
N2O	42	62.885%	C2H2	401	0.002%
N2O	4 3	58.832%	CH4	61	0.001%
$\operatorname{Solar}(A)$		31.970%	N2	411	0.001%
$\operatorname{Solar-sim}$		31.316%	NO	81	< 0.001%
O3	31	31.827%	NH3	111	< 0.001%
N2O	4 4	14.580%	OH	131	< 0.001%
CO	51	4.438%	HBr	161	< 0.001%
H2O	11	2.879%	HI	171	$<\!0.001\%$
CO2	21	2.036%	H2S	471	< 0.001%

 N_2O , Kiruna, $\varphi = 71.02^{\circ}$, OPD=257cm, FoV=2.39mrad, boxcar apod.

Wavenumber ν in cm^{-1}

Wavenumber ν in cm^{-1}

investigated a	species		:	$N_2O(i2), (I$	$V_2O)$				
line position((s) ν_0		:	2190.8805,	$2190.8805, (2190.4950) \ cm^{-1}$				
lower state en	nergy E_{lst}''		:	114.0, (782.	114.0, (782.4) cm^{-1}				
retrieved TC	A, informa	tion content	:	5.17E + 18,	(5.56E+18) m	$olec/cm^2, 245.5, (525)$.7)		
temperature	dependence	e of the TCA	:	+.567, (66)	2)%/K (trop)	, +.003, (097)%/K	(strat)		
location, date	e, solar zen	ith angle	:	Kiruna, 15/Mar/97, 71.02°					
spectral interval fitted			:	2190.380 -	$2191.430 \ cm$	2^{-1}			
Molecule	iCode	Absorption		Molecule	iCode	Absorption			
N2O	41	100.000%		H2O	11	1.744%			
CO	51	92.617%		CH4	61	0.001%			
N2O	4 2	62.457%		C2H2	401	0.001%			
N2O	4 3	59.133%		NO	81	$<\!0.001\%$			
$\operatorname{Solar}(A)$		32.310%		NH3	111	$<\!0.001\%$			
Solar-sim		31.798%		OH	131	$<\!0.001\%$			
O3	31	24.217%		HBr	161	$<\!0.001\%$			
N2O	44	18.787%		HI	171	$<\!0.001\%$			
CO2	21	2.808%		N2	411	$<\!0.001\%$			
N2O	4 5	2.581%		H2S	471	$<\!0.001\%$			

 N_2O , Kiruna, $\varphi = 71.02^{\circ}$, OPD=257cm, FoV=2.39mrad, boxcar apod.

Wavenumber ν in cm^{-1}

Wavenumber ν in cm^{-1}

investigated species				$N_2O(i3), (N_2O)$				
line position	n(s) ν_0		:	2194.9397, (2194.5897) cm^{-1}				
lower state	energy E_{lst}''		:	29.1, (212.0) cm^{-1}				
retrieved TCA, information content				$5.35e18, (5.73e18) \ molec/cm^2, \ 132.7, \ (444.0)$				
temperature dependence of the TCA				+.154, $(953)%/K$ (trop), $+.225$, $(072)%/K$ (strat)				
investigated	l species, po	osition	:	$N_2O(i2), 2195.0847 \ cm^{-1}$				
lower state	energy E_{lst}''		:	$415.5 \ cm^{-1}$				
retrieved TCA, information content				$5.58e18 \ molec/cm^2, \ 154.4$				
temperature dependence of the TCA				-1.32%/K (trop), $+0.073%/K$ (strat)				
Molecule	iCode	Absorption	1	Molecule iCode Absorption				

iCode	Absorption	Molecule	iCode	Absorption
41	100.000%	N2O	45	4.289%
51	56.692%	N2	411	1.336%
4 2	55.239%	CH4	61	0.001%
4 3	52.955%	C2H2	401	0.001%
—	34.656%	NO	81	< 0.001%
—	32.819%	NH3	111	< 0.001%
11	27.559%	OH	131	< 0.001%
44	26.215%	HBr	161	< 0.001%
31	14.010%	HI	171	< 0.001%
21	5.026%	H2S	471	< 0.001%
	iCode 41 51 42 43 — 11 44 31 21	iCodeAbsorption41 100.000% 51 56.692% 42 55.239% 43 52.955% 34.656% 32.819% 11 27.559% 44 26.215% 31 14.010% 21 5.026%	iCodeAbsorptionMolecule41100.000% $N2O$ 5156.692% $N2$ 4255.239% $CH4$ 4352.955% $C2H2$ 34.656% NO 32.819% $NH3$ 1127.559% OH 4426.215% HBr 3114.010% HI 215.026% $H2S$	iCodeAbsorptionMoleculeiCode41100.000% $N2O$ 455156.692% $N2$ 4114255.239% $CH4$ 614352.955% $C2H2$ 40134.656% NO 8132.819% $NH3$ 1111127.559% OH 1314426.215% HBr 1613114.010% HI 171215.026% $H2S$ 471

 N_2 , Kiruna, $\varphi = 70.54^o$, OPD=257cm, FoV=2.39mrad, boxcar apod.

Wavenumber ν in cm^{-1}

investigated species line position(s) ν_0 lower state energy E''_{lst} retrieved TCA, information content temperature dependence of the TCA location, date, solar zenith angle spectral interval fitted			$\begin{array}{c} N_2 \\ 2403.5650 \\ 143.2 \ cm^- \\ 1.63E+25 \\ -0.037\%/K \\ \text{Kiruna, 15} \\ 2403.250 \end{array}$	cm^{-1} $molec/cm^{2}$, 1 (trop), -0.02 b/Mar/97, 7 2403 870 cm	26.1 2%/K (strat) 1.02^{o}
Molecule	iCode	Absorption	Molecule	iCode	Absorption
N2	411	31.497%	N2O	41	0.020%
CH4	61	6.211%	NH3	111	< 0.001%
CO2	21	5.409%	OH	131	< 0.001%
$\operatorname{Solar}(A)$		1.000%	HCl	151	< 0.001%
Solar-sim	—	0.779%	HBr	161	< 0.001%
N2O	44	0.669%	HI	171	< 0.001%
O3	31	0.395%	H2S	471	$<\!0.001\%$
H2O	11	0.056%	HDO	491	$<\!0.001\%$

 N_2 , Kiruna, $\varphi = 70.54^o$, OPD=257cm, FoV=2.39mrad, boxcar apod.

Wavenumber ν in cm^{-1}

investigated species line position(s) ν_0 lower state energy E''_{lst} retrieved TCA, information content temperature dependence of the TCA location, date, solar zenith angle spectral interval fitted			:::::::::::::::::::::::::::::::::::::::	N_2 2411.1274 cm ⁻¹ 179.0 cm ⁻¹ 1.62E+25 molec/cm ² , 90.4 -0.111%/K (trop), -0.037%/K (strat) Kiruna, 15/Mar/97, 71.02° 2410 860 - 2411 550 cm ⁻¹		
Molecule	iCode	Absorption	•	Molecule	iCode	Absorption
N2	411	15.469%		<i>O</i> 3	31	0.229%
CO2	21	11.567%		NH3	111	< 0.001%
$\operatorname{Solar}(A)$		7.490%		OH	131	< 0.001%
Solar-sim		7.763%		HBr	161	< 0.001%
CH4	61	5.922%		HI	171	< 0.001%
H2O	11	0.645%		H2S	471	< 0.001%
N2O	41	0.246%		HDO	491	$<\!0.001\%$

 N_2 , Kiruna, $\varphi = 70.54^o$, OPD=257cm, FoV=2.39mrad, boxcar apod.

236

Wavenumber ν in cm^{-1}

investigated species line position(s) ν_0 lower state energy E''_{lst} retrieved TCA, information content temperature dependence of the TCA location, date, solar zenith angle spectral interval fitted			: : : : :	N_2 2418.6520 cm ⁻¹ 218.8 cm ⁻¹ 1.65E+25 molec/cm ² , 196.9 -0.315%/K (trop), -0.076%/K (strat) Kiruna, 15/Mar/97, 71.02° 2418.400 - 2418.900 cm ⁻¹		
Molecule	iCode	Absorption		Molecule	iCode	Absorption
$\mathbf{N2}$	411	25.033%		O3	31	0.443%
$\operatorname{Solar}(A)$		16.501%		H2O	11	0.046%
Solar-sim		16.719%		HDO	491	0.035%
CO2	21	13.004%		NH3	111	< 0.001%
N2O	41	1.601%		OH	131	< 0.001%
N2O	4 4	0.673%		HBr	161	< 0.001%
CH4	61	0.629%		H2S	471	$<\!0.001\%$

 N_2O , Kiruna, $\varphi=70.54^o$, OPD=257cm, FoV=2.39mrad, boxcar apod.

Wavenumber ν in cm^{-1}

investigated species line position(s) ν_0 lower state energy E''_{lst} retrieved TCA, information content temperature dependence of the TCA location, date, solar zenith angle spectral interval fitted			: : : : :	N_2O 2442.2769 cm ⁻¹ 231.2 cm ⁻¹ 5.56E+18 molec/cm ² , 418.5 -0.193%/K (trop), -0.055%/K (strat) Kiruna, 15/Mar/97, 71.02° 2442.000 - 2442.550 cm ⁻¹		
Molecule	iCode	Absorption		Molecule	iCode	Absorption
N2O	41	62.086%		N2	411	0.004%
CO2	21	11.795%		HDO	491	0.003%
$\operatorname{Solar}(A)$		1.384%		SO2	91	< 0.001%
Solar-sim		$<\!0.001\%$		NH3	111	< 0.001%
CH4	61	0.598%		OH	131	< 0.001%
O3	31	0.186%		HBr	161	< 0.001%
H2O	11	0.019%		H2S	471	< 0.001%

Wavenumber ν in cm^{-1}

Wavenumber ν in cm^{-1}

investigated species line position(s) ν_0 lower state energy E''_{lst} retrieved TCA, information content temperature dependence of the TCA location, date, solar zenith angle spectral interval fitted			: : : :	N_2O 2444.0304, 2444.9041 cm^{-1} 193.6, 176.0 cm^{-1} 5.64E+18 $molec/cm^2$, 366.4, 373.5 -0.024%/K (trop), -0.028%/K (strat) Kiruna, 15/Mar/97, 71.02° 2443.600 - 2445.250 cm^{-1}		
Molecule	iCode	Absorption		Molecule	iCode	Absorption
N2O	41	66.628%		H2O	11	0.001%
CO2	21	10.803%		N2	411	0.001%
$\operatorname{Solar}(A)$		1.051%		SO2	91	$<\!0.001\%$
Solar-sim		< 0.001%		NH3	111	< 0.001%
CH4	61	0.289%		OH	131	$<\!0.001\%$
O3	31	0.212%		HBr	161	$<\!0.001\%$
HDO	491	0.076%		H2S	471	< 0.001%

 N_2O , Kiruna, $\varphi=70.54^o$, OPD=257cm, FoV=2.39mrad, boxcar apod.

Wavenumber ν in cm^{-1}

Wavenumber ν in cm^{-1}

investigated species line position(s) ν_0 lower state energy E''_{lst} retrieved TCA, information content temperature dependence of the TCA location, date, solar zenith angle spectral interval fitted			:::::::::::::::::::::::::::::::::::::::	N_2O 2446.6458 c 143.3 cm ⁻¹ 5.57E+18 m +0.144%/K Kiruna, 15/ 2446.250 -	cm^{-1} nolec/cm ² , 7 ((trop), +0.0 /Mar/97, 7 2446.995 cm	25.8 099%/K (strat) 1.02^{o} n^{-1}
Molecule	iCode	Absorption		Molecule	iCode	Absorption
N2O	41	70.032%		N2	411	0.003%
$\operatorname{Solar}(A)$		11.160%		SO2	91	$<\!0.001\%$
Solar-sim		${<}0.001\%$		NH3	111	$<\!0.001\%$
CO2	21	9.621%		OH	131	$<\!0.001\%$
CH4	61	0.611%		HBr	161	$<\!0.001\%$
O3	31	0.151%		H2S	471	< 0.001%
H2O	11	0.060%		HDO	491	$<\!0.001\%$

 N_2O , Kiruna, $\varphi = 71.02^{\circ}$, OPD=257cm, FoV=2.39mrad, boxcar apod.

Wavenumber ν in cm^{-1}

investigated line position lower state e retrieved TC temperature location, dat spectral inte	avestigated species ne position(s) ν_0 over state energy E''_{lst} etrieved TCA, information content emperature dependence of the TCA ocation, date, solar zenith angle occtral interval fitted			N_2O 2447.5139 cm ⁻¹ 128.2 cm ⁻¹ 5.69E+18 molec/cm ² , 531.0 +0.233%/K (trop), +0.000%/K (strat) Kiruna, 15/Mar/97, 71.02° 2447.300 - 2447.750 cm ⁻¹		
Molecule	iCode	Absorption	Molecule	iCode	Absorption	
N2O	41	73.175%	H2O	11	0.062%	
N2	411	10.908%	HDO	491	0.001%	
CO2	21	8.528%	SO2	91	< 0.001%	
$\operatorname{Solar}(A)$		0.911%	NH3	111	$<\!0.001\%$	
Solar-sim		$<\!0.001\%$	OH	131	< 0.001%	
CH4	61	0.625%	HCl	15 2	< 0.001%	
N2O	4 3	0.557%	HBr	161	< 0.001%	
O3	31	0.183%	H2S	471	< 0.001%	

 N_2O , Kiruna, $\varphi = 71.02^{\circ}$, OPD=257cm, FoV=2.39mrad, boxcar apod.

246

Wavenumber ν in cm^{-1}

investigated species line position(s) ν_0 lower state energy E''_{lst} retrieved TCA, information content temperature dependence of the TCA location, date, solar zenith angle			N_2O 2454.3923, 37.7, 30.2 c 5.65E+18 r +0.500%/k Kiruna, 15 2454 000 -	2455.2441 c m^{-1} $nolec/cm^2$, 6 χ (trop), +0.0 /Mar/97, 7 2455.610 cm	m^{-1} 339.3, 607.3 040%/K (strat) 1.02° 2^{-1}
Molecule	iCode	Absorption	Molecule	iCode	Absorption
N2O	41	59.946%	H2O	11	0.001%
N2	411	4.140%	NH3	111	0.001%
CO2	21	1.526%	SO2	91	< 0.001%
$\operatorname{Solar}(A)$		1.200%	OH	131	$<\!0.001\%$
Solar-sim		1.387%	HCl	151	$<\!0.001\%$
CH4	61	0.574%	HBr	161	$<\!0.001\%$
O3	31	0.182%	H2S	471	< 0.001%
HDO	491	0.023%			

 N_2O , Kiruna, $\varphi=70.54^o$, OPD=257cm, FoV=2.39mrad, boxcar apod.

Wavenumber ν in cm^{-1}

investigated species line position(s) ν_0 lower state energy E''_{lst} retrieved TCA, information content temperature dependence of the TCA location, date, solar zenith angle			$ \begin{array}{c} N_2O \\ 2464.5001, \\ 2.5, 5.0 \ cm \\ 5.58E+18 \\ +0.570\%/I \\ \mathrm{Kiruna, 15} \end{array} $	$^{2465.3312}_{n}c^{2465.3312}$ c molec/cm ² , 2 X (trop), +0.0 J/Mar/97, 7	m^{-1} 242.5, 309.2 241%/K (strat) 1.02°
spectral interval fitted			2464.200 -	2465.570 cn	n^{-1}
Molecule	iCode	Absorption	Molecule	iCode	Absorption
N2O	41	50.505%	HDO	491	0.014%
CH4	61	7.548%	SO2	91	0.003%
$\operatorname{Solar}(A)$		2.939%	N2	411	0.001%
Solar-sim		< 0.001%	NH3	111	$<\!0.001\%$
N2O	4 4	0.536%	OH	131	$<\!0.001\%$
O3	31	0.239%	HCl	151	$<\!0.001\%$
H2O	11	0.073%	HBr	161	$<\!0.001\%$
CO2	21	0.062%	H2S	471	< 0.001%

 N_2O , Kiruna, $\varphi=70.54^o$, OPD=257cm, FoV=2.39mrad, boxcar apod.

Wavenumber ν in cm^{-1}

investigated species line position(s) ν_0 lower state energy E''_{lst} retrieved TCA, information content temperature dependence of the TCA location, date, solar zenith angle spectral interval fitted			N_2O 2471.0986, 46.1, 55.3 5.66E+18 +0.283%/1 Kiruna, 18 2470.820 -	2471.9152 c cm^{-1} $molec/cm^2$, 5 X (trop), +0.0 5/Mar/97, 7 2472.200 cm	m^{-1} 08.9, 516.2 008%/K (strat) 1.02° n^{-1}
Molecule	iCode	Absorption	Molecule	iCode	Absorption
N2O	41	75.357%	HDO	491	0.099%
CH4	61	25.379%	CO2	21	0.064%
$\operatorname{Solar}(A)$		13.687%	SO2	91	0.009%
Solar-sim		< 0.001%	HBr	161	0.009%
CO2	2 3	1.318%	N2	411	0.003%
N2O	44	1.044%	NH3	111	$<\!0.001\%$
O3	31	0.307%	OH	131	$<\!0.001\%$
H2O	11	0.264%	H2S	471	$<\!0.001\%$

 N_2O , Kiruna, $\varphi=70.54^o$, OPD=257cm, FoV=2.39mrad, boxcar apod.

Wavenumber ν in cm^{-1}

Wavenumber ν in cm^{-1}

investigated species				$N_2O, (CO_2)$)				
line position(s) ν_0				2479.9719, 2480.7660, (2481.0844) cm^{-1}					
lower state energy E_{lst}''				193.5, 212.0	193.5, 212.0, (278.3) cm^{-1}				
retrieved TCA, information content			:	5.64e18, (7.8	$5.64e18, (7.81e21) \ molec/cm^2, \ 762.6, \ 724.0, \ (67.2)$				
temperature	dependence	e of the TCA	:	059, (-1.173	3)%/K (trop)	,075, (787)%/K (st	rat)		
location, dat	te, solar zen	ith angle	:	Kiruna, 15	/Mar/97, 71	1.02^{o}			
spectral inte	erval fitted		:	2479.700 -	$2479.700 - 2481.175 \ cm^{-1}$				
Molecule	iCode	Absorption		Molecule	iCode	Absorption			
N2O	41	66.363%		CO2	21	0.022%			
CO2	2 3	5.679%		SO2	91	0.022%			
CH4	61	5.254%		N2	411	0.001%			
$\operatorname{Solar}(A)$		4.861%		NH3	111	< 0.001%			
$\operatorname{Solar-sim}$		< 0.001%		OH	131	< 0.001%			
N2O	44	1.387%		HCl	151	< 0.001%			
O3	31	0.212%		HBr	161	< 0.001%			
H2O	11	0.073%		H2S	471	$<\!0.001\%$			
HDO	491	0.025%							

 N_2O , Kiruna, $\varphi=70.54^o$, OPD=257cm, FoV=2.39mrad, boxcar apod.

254

Wavenumber ν in cm^{-1}

investigated species
line position(s) ν_0
lower state energy E''_{lst}
retrieved TCA, information content
temperature dependence of the TCA
location, date, solar zenith angle
spectral interval fitted

 $N_2O, (CO_2(i3))$ 2481.5578, 2482.3474, (2481.0844) cm⁻¹ 231.2, 251.3, (278.3) cm⁻¹

- $5.65e18, (7.36e21) molec/cm^2, 447.3, 430.3, (48.6)$
- -.038, (-.084)%/K (trop), -.035, (-.058)%/K (strat)
- : Kiruna, 15/Mar/97, 71.02°
 - $2481.000 2482.900 \ cm^{-1}$

-					
Molecule	iCode	Absorption	Molecule	iCode	Absorption
N2O	41	60.915%	CO2	21	0.015%
CO2	2 3	6.704%	HDO	491	0.005%
CH4	61	2.313%	NH3	111	< 0.001%
N2O	4 4	1.350%	OH	131	$<\!0.001\%$
$\operatorname{Solar}(A)$		0.610%	HCl	151	$<\!0.001\%$
$\operatorname{Solar-sim}$		$<\!0.001\%$	HBr	161	$<\!0.001\%$
O3	31	0.219%	N2	411	< 0.001%
H2O	11	0.125%	H2S	471	< 0.001%
SO2	91	0.031%			

:

:

:

:

:

:

 N_2O , Kiruna, $\varphi = 70.54^{\circ}$, OPD=257cm, FoV=2.39mrad, boxcar apod.

Wavenumber ν in cm^{-1}

Wavenumber ν in cm^{-1}

investigated species
line position(s) ν_0
lower state energy E''_{lst}
retrieved TCA, information content
temperature dependence of the TCA
location, date, solar zenith angle
spectral interval fitted

: $N_2O, (CO_2(i3))$

 $2486.2595, (2486.1479) \ cm^{-1}$

 $364.4, (154.6) \ cm^{-1}$

6.07E+18, (7.79E+21) molec/cm², 268.5, (53.9)

-.422, (-.950)%/K (trop), -.034, (-.699)%/K (strat)

: Kiruna, 15/Mar/97, 71.02°

 $2485.940 - 2486.555 \ cm^{-1}$

-					
Molecule	iCode	Absorption	Molecule	iCode	Absorption
N2O	41	43.467%	SO2	91	0.037%
CO2	2 3	9.082%	N2	411	0.003%
$\operatorname{Solar}(A)$		2.731%	CO2	21	0.001%
Solar-sim		< 0.001%	NH3	111	< 0.001%
N2O	4 4	0.963%	OH	131	< 0.001%
HDO	491	0.276%	HCl	151	< 0.001%
H2O	11	0.167%	HBr	161	< 0.001%
CH4	61	0.124%	H2S	471	< 0.001%
O3	31	0.115%			

:

:

:

:

:

 N_2O , Kiruna, $\varphi = 70.54^o$, OPD=257cm, FoV=2.39mrad, boxcar apod.

Wavenumber ν in cm^{-1}

Wavenumber ν in cm^{-1}

investigated species
line position(s) ν_0
lower state energy E_{lst}''
retrieved TCA, information content
temperature dependence of the TCA
location, date, solar zenith angle
spectral interval fitted

 $N_2O, (CO_2(i3))$ 2487.0346, 2487.8070, (2487.5988) cm^{-1} 389.5, 415.5, (125.9) cm^{-1}

 $5.86e18,\ (7.43e21)\ molec/cm^2,\ 39.8,\ 45.3,\ (12.2)$

-.585, (-.897)%/K (trop), -.081, (-.605)%/K (strat)

Kiruna, 15/Mar/97, 71.02° 2486.550 – 2488.180 cm^{-1}

~P					
Molecule	iCode	Absorption	Molecule	iCode	Absorption
N2O	41	36.012%	H2O	11	0.028%
CO2	2 3	9.764%	NH3	111	0.001%
$\operatorname{Solar}(A)$		4.637%	CO2	21	${<}0.001\%$
$\operatorname{Solar-sim}$		< 0.001%	OH	131	${<}0.001\%$
N2O	44	0.717%	HCl	151	${<}0.001\%$
CH4	61	0.328%	HBr	161	${<}0.001\%$
O3	31	0.115%	N2	411	${<}0.001\%$
HDO	491	0.101%	H2S	471	< 0.001%
SO2	91	0.031%			

:

:

:

:

:

:

•

Comment: The lack of solar line data make this window a poor choice at present.

 CO_2 , Kiruna, $\varphi = 71.02^o$, OPD=257cm, FoV=2.39mrad, boxcar apod.

Wavenumber ν in cm^{-1}

Wavenumber ν in cm^{-1}

investigated species			:	$CO_2(i3)$		
line position(s) ν_0			:	$2489.0517, 2489.7790 \ cm^{-1}$		
lower state	energy E_{let}''		:	100.1, 88.3	cm^{-1}	
retrieved T	CA, informa	tion content	:	7.07E + 21 m	$nolec/cm^2$, 1	59.7, 174.4
temperature dependence of the TCA			:	-0.152%/K	(trop), +0.03	35%/K (strat)
location date solar zenith angle			:	Kiruna. $15/Mar/97$. 71.02°		
spectral interval fitted			:	2488.95 - 248	89.137 & 248	$9.63 - 2489.90 \ cm^{-1}$
Molecule	iCode	Absorption	I	Molecule	iCode	Absorption
N2O	41	25.956%		HBr	161	0.011%
$\mathbf{CO2}$	2 3	10.497%		H2O	11	0.001%
$\operatorname{Solar}(A)$		6.582%		N2	411	0.001%
Solar-sim		< 0.001%		CO2	21	< 0.001%
CH4	61	0.302%		NH3	111	< 0.001%
HDO	491	0.138%		OH	131	< 0.001%
O3	31	0.106%		HCl	151	< 0.001%
SO2	91	0.028%		H2S	471	< 0.001%

Comment: Simultaneous 2-microwindow fit

 CO_2 , Kiruna, $\varphi = 70.54^{\circ}$, OPD=257cm, FoV=2.39mrad, boxcar apod.

Wavenumber ν in cm^{-1}

investigated species				$CO_{2}(i3), (N$	$V_2O)$				
line position(s) ν_0				2492.6940, (2492.3848) cm^{-1}					
lower state energy E''_{lot}				48.6, (588.8)	$48.6, (588.8) \ cm^{-1}$				
retrieved TCA, information content			:	7.32E + 21,	(5.57E+18) m	$olec/cm^2$, 166.7, (21)	(1.5)		
temperature dependence of the TCA			:	+.074, (-1.2)	+.074, $(-1.21)%/K$ (trop), 084 , $(252)%/K$ (strat)				
location, date, solar zenith angle			:	Kiruna, 15	Kiruna, 15/Mar/97, 71.02°				
spectral interval fitted			:	2491.860 -	$2491.860 - 2492.900 \ cm^{-1}$				
Molecule	iCode	Absorption		Molecule	iCode	Absorption			
N2O	41	14.381%		HDO	491	0.007%			
CO2	2 3	9.870%		H2O	11	0.001%			
Solar(A)		1.251%		CO2	21	< 0.001%			
Solar-sim		1.248%		NH3	111	< 0.001%			
N2	411	1.149%		OH	131	< 0.001%			
CH4	61	0.861%		HCl	151	< 0.001%			
<i>O</i> 3	31	0.225%		HBr	161	< 0.001%			
SO2	91	0.023%		H2S	471	< 0.001%			

 $CO_2(i3)$, Kiruna, $\varphi = 71.02^{\circ}$, OPD=257cm, FoV=2.39mrad, boxcar apod.

Wavenumber ν in cm^{-1}

investigated species
line position(s) ν_0
lower state energy E_{lst}''
retrieved TCA, information content
temperature dependence of the TCA
location, date, solar zenith angle
spectral interval fitted

: $CO_2(i3), (N_2O(i3))$: 2517.1010, (2517.1892) cm^{-1}

 $170.1, (170.0) \ cm^{-1}$

7.44E+21, (5.72E+18) molec/cm², 221.1, (33.7)

: -.032, (-.238)%/K (trop), -.017, (-.017)%/K (strat)

: Kiruna, 15/Mar/97, 71.02°

 $2516.900 - 2517.400 \ cm^{-1}$

Molecule	iCode	Absorption	Molecule	iCode	Absorption
N2O	41	9.695%	H2O	11	0.017%
$\mathbf{CO2}$	2 3	9.380%	NH3	111	< 0.001%
CH4	61	2.192%	OH	131	< 0.001%
N2O	4 3	1.702%	HCl	151	< 0.001%
HDO	491	1.632%	HBr	161	< 0.001%
$\operatorname{Solar}(A)$		1.610%	OCS	191	$<\!0.001\%$
$\operatorname{solar-sim}$		0.363%	N2	411	< 0.001%
O3	31	0.093%	H2S	471	< 0.001%
SO2	91	0.018%			

:

:

•

 N_2O , Kiruna, $\varphi = 71.02^o$, OPD=257cm, FoV=2.39mrad, boxcar apod.

Wavenumber ν in cm^{-1}

Wavenumber ν in cm^{-1}

investigated species line position(s) ν_0 lower state energy E''_{lst} retrieved TCA, information content temperature dependence of the TCA location, date, solar zenith angle spectral interval fitted			: : : : :	$N_2O(i3)$ 2521.7504 c 97.2 cm ⁻¹ 5.61E+18 m -0.410%/K Kiruna, 15, 2521 640 -	m^{-1} $nolec/cm^2$, 3 (trop), -0.03 /Mar/97, 7 2521 890 cm	35.7 1%/K (strat) 1.02^{o} 2^{-1}
Molecule	iCode	Absorption	•	Molecule	iCode	Absorption
N2O	41	21.622%		SO2	91	0.006%
CO2	2 3	6.097%		NH3	111	< 0.001%
$\operatorname{Solar}(A)$		2.191%		OH	131	< 0.001%
solar-sim		2.168%		HCl	151	< 0.001%
N2O	4 3	1.912%		HBr	161	< 0.001%
CH4	61	0.588%		OCS	191	< 0.001%
HDO	491	0.407%		N2	411	< 0.001%
H2O	11	0.074%		H2S	471	< 0.001%
O3	31	0.064%				

 N_2O , Kiruna, $\varphi = 71.02^{\circ}$, OPD=257cm, FoV=2.39mrad, boxcar apod.

Wavenumber ν in cm^{-1}

investigated	species		:	$N_2O, (CO_2(i3))$						
line position	n(s) ν_0		:	2523.4799,	$2523.4799, (2523.0910, 2523.8405) \ cm^{-1}$					
lower state	energy E_{lst}''		:	721.0, (320.	2, 342.3) cm	-1				
retrieved T	CA, informat	tion content	:	5.61E + 18,	(7.70E+21) m	$colec/cm^2, 399.5, (95)$	5.2, 87.5)			
temperature	e dependence	e of the TCA	:	-1.429, (66	2)%/K (trop)),193, (109)%/K	(strat)			
location, da	te, solar zen	ith angle	:	Kiruna, 15	/Mar/97, 7	1.02^{o}				
spectral interval fitted			:	2522.950 -	2524.100 cm	n^{-1}				
Molecule	iCode	Absorption		Molecule	iCode	Absorption				
N2O	41	30.280%		O3	31	0.064%				
CO2	2 3	5.026%		HBr	161	0.009%				
N2O	4 3	1.900%		SO2	91	0.003%				
$\operatorname{Solar}(A)$		0.882%		OCS	191	0.001%				
solar-sim		0.647%		NH3	111	< 0.001%				
CH4	61	0.800%		OH	131	< 0.001%				
N2O	4 2	0.605%		HCl	151	< 0.001%				
HDO	491	0.591%		N2	411	$<\!0.001\%$				
H2O	11	0.099%		H2S	471	$<\!0.001\%$				

 N_2O , Kiruna, $\varphi = 71.02^{\circ}$, OPD=257cm, FoV=2.39mrad, boxcar apod.

Wavenumber ν in cm^{-1}

investigated species line position(s) ν_0 lower state energy E''_{lst} retrieved TCA, information content temperature dependence of the TCA location, date, solar zenith angle spectral interval fitted			:::::::::::::::::::::::::::::::::::::::	$N_2O(i3)$ 2527.0261 of 36.4 cm ⁻¹ 5.65E+18 m -0.367%/K Kiruna, 15 2526.950 -	cm^{-1} nolec/cm ² , 2 (trop), -0.01 /Mar/97, 7 2527.110 cn	20.5 2%/K (strat) 1.02^{o} n^{-1}
Molecule	iCode	Absorption		Molecule	iCode	Absorption
N2O	41	41.012%		N2	411	0.043%
CO2	2 3	2.782%		H2O	11	0.001%
CH4	61	2.394%		SO2	91	0.001%
N2O	4 3	1.614%		OCS	191	0.001%
N2O	4 2	0.886%		NH3	111	< 0.001%
$\operatorname{Solar}(A)$		0.590%		OH	131	< 0.001%
solar-sim		0.200%		HCl	151	< 0.001%
HDO	491	0.092%		HBr	161	< 0.001%
O3	31	0.055%		H2S	471	< 0.001%

 N_2O , Kiruna, $\varphi = 71.02^{\circ}$, OPD=257cm, FoV=2.39mrad, boxcar apod.

Wavenumber ν in cm^{-1}

investigated species line position(s) ν_0 lower state energy E''_{lst} retrieved TCA, information content temperature dependence of the TCA location, date, solar zenith angle			: : : :	$N_2O(i3)$ 2529.5827 o 17.0 cm ⁻¹ 5.62E+18 n -0.373%/K Kiruna, 15 2520.482	cm^{-1} nolec/cm ² , 2 (trop), -0.00 /Mar/97, 7 2520.670, cm	26.1 3%/K (strat) 1.02^{o}
Molecule	iCode	Absorption	:	Molecule	iCode	Absorption
N2O	41	58.308%		H2O	11	0.009%
CH4	61	42.345%		OCS	191	0.001%
$\operatorname{Solar}(A)$		5.759%		SO2	91	< 0.001%
solar-sim		5.625%		NH3	111	< 0.001%
CO2	2 3	1.821%		OH	131	< 0.001%
N2O	4 3	1.343%		HBr	161	< 0.001%
N2O	4 2	1.209%		N2	411	< 0.001%
HDO	491	0.419%		H2S	471	< 0.001%
O3	31	0.044%				

 N_2O , Kiruna, $\varphi = 71.02^{\circ}$, OPD=257cm, FoV=2.39mrad, boxcar apod.

Wavenumber ν in cm^{-1}

Wavenumber ν in cm^{-1}

investigated species line position(s) ν_0 lower state energy E''_{lst} retrieved TCA, information content temperature dependence of the TCA location, date, solar zenith angle spectral interval fitted			: : : : :	N_2O 2540.3611 c 272.3 cm ⁻¹ 5.66E+18 r -0.252%/K Kiruna, 15 2540.050 -	cm ⁻¹ nolec/cm ² , 1 (trop), -0.05 /Mar/97, 7 2540.750 cn	1.705.0 8%/K (strat) 1.02^{o} n^{-1}
Molecule	iCode	Absorption		Molecule	iCode	Absorption
N2O	41	97.234%		HDO	491	0.018%
$\operatorname{Solar}(A)$	—	6.099%		N2	411	0.013%
solar-sim		$<\!0.001\%$		OCS	191	0.003%
N2O	4 2	2.014%		SO2	91	< 0.001%
N2O	4 3	1.704%		NH3	111	< 0.001%
CH4	6 2	1.591%		OH	131	< 0.001%
CH4	61	0.872%		HCl	151	< 0.001%
H2O	11	0.232%		HBr	161	< 0.001%
CO2	2 3	0.109%		H2S	471	< 0.001%
O3	31	0.028%				

 $N_2O(i3)$, Kiruna, $\varphi=71.02^o$, OPD=257cm, FoV=2.39mrad, boxcar apod.

Wavenumber ν in cm^{-1}

 $\sigma = 0.034\%$, 970315S4.90, $\varphi = 71.02^{\circ}$, OPD=257cm, FoV=2.39mrad, Apod.=boxcar

Wavenumber ν in cm^{-1}

investigated species line position(s) ν_0 lower state energy E''_{lst} retrieved TCA, information content temperature dependence of the TCA location, date, solar zenith angle spectral interval fitted			$\begin{array}{rrrr} & N_2O(i3) \\ & 2543.7733 \\ & 53.4 \ cm^{-1} \\ & 5.49\mathrm{E}{+18} \\ & -0.947\%/\mathrm{K} \\ & \mathrm{Kiruna, \ 15} \\ & 2543.640 \ - \end{array}$	cm ⁻¹ molec/cm ² , 2 (trop), -0.16 5/Mar/97, 7 2543.907 cm	24.6 3%/K (strat) 1.02^{o} n^{-1}
Molecule	iCode	Absorption	Molecule	iCode	Absorption
N2O	41	97.133%	O3	31	0.024%
CH4	61	9.890%	HBr	161	0.004%
$\operatorname{Solar}(A)$		5.127%	OCS	191	0.004%
$\operatorname{solar-sim}$		4.136%	NH3	111	< 0.001%
N2O	4 3	1.571%	OH	131	< 0.001%
N2O	4 2	1.491%	HCl	151	< 0.001%
HDO	491	0.149%	N2	411	< 0.001%
CO2	23	0.055%	H2S	471	< 0.001%
H2O	11	0.050%			

 N_2O , Kiruna, $\varphi = 71.02^{\circ}$, OPD=257cm, FoV=2.39mrad, boxcar apod.

Wavenumber ν in cm^{-1}

investigated species line position(s) ν_0 lower state energy E''_{lst} retrieved TCA, information content temperature dependence of the TCA location, date, solar zenith angle spectral interval fitted			:::::::::::::::::::::::::::::::::::::::	$N_2O(i3)$ 2549.4462 o 153.8 cm ⁻¹ 6.07E+18 o -0.263%/K Kiruna, 15 2549.370 -	cm^{-1} nolec/cm ² , 1 (trop), -0.03 /Mar/97, 7 2549.530 cm	6.1 2%/K (strat) 1.02^{o} v^{-1}
Molecule	iCode	Absorption	1	Molecule	iCode	Absorption
N2O	41	99.676%		H2O	11	0.001%
CH4	61	9.995%		CO2	2 3	$<\!0.001\%$
HDO	491	4.138%		NH3	111	< 0.001%
$\operatorname{Solar}(A)$		2.685%		OH	131	< 0.001%
$\operatorname{solar-sim}$		< 0.001%		HCl	151	< 0.001%
N2O	4 3	1.892%		HBr	161	< 0.001%
N2O	4 2	0.885%		N2	411	< 0.001%
O3	31	0.014%		H2S	471	< 0.001%
OCS	191	0.004%				

 N_2O , Kiruna, $\varphi = 71.02^{\circ}$, OPD=257cm, FoV=2.39mrad, boxcar apod.

Wavenumber ν in cm^{-1}

investigated species line position(s) ν_0 lower state energy E''_{lst} retrieved TCA, information content temperature dependence of the TCA location, date, solar zenith angle spectral interval fitted			: : : :	$N_2O(i3)$ 2551.4732 c 204.8 cm ⁻¹ 5.57E+18 n -0.400%/K Kiruna, 15/ 2551.275	m^{-1} nolec/cm ² , 1 (trop), -0.066 /Mar/97, 72	7.5 0%/K (strat) 1.02^{o}
Molecule	iCode	Absorption		Molecule	iCode	Absorption
N2O	41	99.714%		OCS	191	0.003%
CH4	61	7.580%		CO2	2 3	< 0.001%
N2O	4 3	1.616%		NH3	111	< 0.001%
$\operatorname{Solar}(A)$		1.375%		OH	131	< 0.001%
$\operatorname{solar-sim}$		1.167%		HCl	151	$<\!0.001\%$
HDO	491	0.968%		HBr	161	$<\!0.001\%$
O3	31	0.013%		N2	411	< 0.001%
H2O	11	0.010%		H2S	471	$<\!0.001\%$

 N_2O , Kiruna, $\varphi = 71.02^{\circ}$, OPD=257cm, FoV=2.39mrad, boxcar apod.

Wavenumber ν in cm^{-1}

Wavenumber ν in cm^{-1}

investigated species line position(s) ν_0 lower state energy E''_{lst} retrieved TCA, information content temperature dependence of the TCA			: N_2C : 2551 : 76.3 : 5.71 : +0.2 : View) 9157 cr cm ⁻¹ E+18 m 286%/K	m^{-1} $colec/cm^2$, 1 (trop), -0.0 Map /07 7	199.0 18%/K (strat)
location, date, solar zenith angle spectral interval fitted			: Kirt : 2551	1.435 - 2	Mar/97, 7 2552.400 cm	n^{-1}
Molecule	iCode	Absorption	Mole	ecule	iCode	Absorption
N2O	41	99.714%	OC	S	191	0.003%
CH4	61	7.580%	CO2	2	2 3	$<\!0.001\%$
N2O	4 3	1.616%	NH	3	111	$<\!0.001\%$
$\operatorname{Solar}(A)$		1.375%	OH		131	$<\!0.001\%$
$\operatorname{solar-sim}$		1.167%	HC	ļ	151	< 0.001%
HDO	491	0.968%	HB	r	161	< 0.001%
O3	31	0.013%	N2		411	< 0.001%
H2O	11	0.010%	H2S	5	471	$<\!0.001\%$

 $N_2O(i2)$, Kiruna, $\varphi=71.02^o$, OPD=257cm, FoV=2.39mrad, boxcar apod.

284

Wavenumber ν in cm^{-1}

investigated species line position(s) ν_0 lower state energy E''_{lst} retrieved TCA, information content temperature dependence of the TCA			: : : :	N_2O 2560.3820 o 37.7 cm ⁻¹ 5.33E+18 r -0.118%/K	cm^{-1} nolec/cm ² , 1 (trop), +0.02	9.7 29%/K (strat)
location, date, solar zenith angle			:	Kiruna, 15/Mar/97, 71.02°		
spectral inte	ervai inted		•	2300.230 -	2300.310 <i>cm</i>	l
Molecule	iCode	Absorption		Molecule	iCode	Absorption
N2O	41	87.742%		OCS	191	0.004%
CH4	61	30.980%		N2	411	0.004%
$\operatorname{Solar}(A)$		14.791%		NH3	111	$<\!0.001\%$
solar-sim		0.613%		OH	131	< 0.001%
N2O	4 2	1.597%		HCl	151	< 0.001%
HDO	491	0.038%		HBr	161	< 0.001%
H2O	11	0.023%		H2S	471	$<\!0.001\%$

 N_2O , Kiruna, $\varphi = 71.02^{\circ}$, OPD=257cm, FoV=2.39mrad, boxcar apod.

Wavenumber ν in cm^{-1}

Wavenumber ν in cm^{-1}

investigated species line position(s) ν_0 lower state energy E''_{lst} retrieved TCA, information content temperature dependence of the TCA location, date, solar zenith angle spectral interval fitted			••••••••••••••	$N_2O(i2)$ 2562.6282 c 65.4 cm ⁻¹ 5.65E+18 m -0.211%/K Kiruna, 15/ 2562.590 - 2	m^{-1} nolec/cm ² , 9 (trop), -0.07 (Mar/97, 7) 2562.670 cm	$0.3 \\ 6\%/{ m K}~{ m (strat)} \\ 1.02^o \\ \imath^{-1}$
Molecule	iCode	Absorption		Molecule	iCode	Absorption
N2O	41	47.419%		CO2	2 3	< 0.001%
CH4	61	10.322%		NH3	111	< 0.001%
HDO	491	3.836%		OH	131	< 0.001%
$\operatorname{Solar}(A)$		2.853%		HCl	151	$<\!0.001\%$
$\operatorname{solar-sim}$		$<\!0.001\%$		HBr	161	$<\!0.001\%$
N2O	4 2	2.219%		N2	411	< 0.001%
OCS	191	0.005%		H2S	471	< 0.001%
H2O	11	0.002%				

 $N_2O(i2)$, Kiruna, $\varphi=71.02^o$, OPD=257cm, FoV=2.39mrad, boxcar apod.

Wavenumber ν in cm^{-1}

Wavenumber ν in cm^{-1}

investigated species line position(s) ν_0 lower state energy E''_{lst} retrieved TCA, information content temperature dependence of the TCA location, date, solar zenith angle spectral interval fitted Melocula iCode Absorption			$\begin{array}{llllllllllllllllllllllllllllllllllll$	$\begin{array}{c} 3 \ cm^{-1} \\ m^{-1} \end{array}$ 8 $molec/cm^2, 2$ 7 (K (trop), -0.00 15/Mar/97, 7 - 2566.375 cm	20.3 33%/K (strat) 71.02^{o} n^{-1}
Molecule	iCode	Absorption	Molecule	iCode	Absorption
N2O	41	89.179%	OCS	191	0.005%
CH4	61	14.133%	CO2	2 3	$<\!0.001\%$
$\operatorname{Solar}(A)$		10.436%	NH3	111	$<\!0.001\%$
$\operatorname{solar-sim}$		3.546%	OH	131	$<\!0.001\%$
HDO	491	1.819%	HCl	151	< 0.001%
N2O	4 2	1.682%	HBr	161	< 0.001%
CH4	6 2	0.560%	N2	411	$<\!0.001\%$
H2O	11	0.006%	H2S	471	$<\!0.001\%$

 CH_4 , Kiruna, $\varphi = 71.02^o$, OPD=257cm, FoV=2.39mrad, boxcar apod.

Wavenumber ν in cm^{-1}

Wavenumber ν in cm^{-1}

investigated species line position(s) ν_0 lower state energy E''_{lst} retrieved TCA, information content temperature dependence of the TCA location, date, solar zenith angle spectral interval fitted Molecule iCode Absorption			$\begin{array}{rrrr} : & CH_4 \\ : & 2600. \\ : & 219.9 \\ : & 3.20E \\ : & -0.19^4 \\ : & Kirun \\ : & 2599. \end{array}$	$\begin{array}{c} 2726 \ cm^{-1} \\ cm$	175.0 028%/K (strat) 69.87^{o} cm^{-1}
Molecule	iCode	Absorption	Mole	cule iCode	Absorption
CH4	61	50.671%	HCl	151	0.016%
CO2	2 3	15.215%	SO2	91	< 0.001%
N2O	41	5.397%	NH3	111	$<\!0.001\%$
$\operatorname{Solar}(A)$		0.890%	OH	131	$<\!0.001\%$
Solar-sim		$<\!0.001\%$	HBr	161	< 0.001%
HDO	491	0.817%	OCS	191	< 0.001%
CH4	6 2	0.654%	N2	411	< 0.001%
H2O	11	0.038%	H2S	471	< 0.001%

HDO, Kiruna, $\varphi{=}69.87^o,$ OPD=257cm, FoV=1.91mrad, boxcar apod.

Wavenumber ν in cm^{-1}

investigated species line position(s) ν_0 lower state energy E''_{lst} retrieved TCA, information content temperature dependence of the TCA location, date, solar zenith angle spectral interval fitted Molecule iCode Absorption			: HDO : 2612.5400 : 490.4 cm : 4.18E+21 : -0.847%// : Kiruna, 1 : 2611.550	$0 \ cm^{-1}$ -1 $1 \ molec/cm^2, 1$ K (trop), -0.02 15/Mar/97, 69 - 2612.999 cm	06.6 3%/K (strat) 9.87° i^{-1}
Molecule	iCode	Absorption	Molecule	iCode	Absorption
HDO	491	17.700%	SO2	91	$<\!0.001\%$
CO2	2 3	5.179%	NH3	111	< 0.001%
$\operatorname{Solar}(A)$		1.119%	OH	131	$<\!0.001\%$
Solar-sim		1.104%	HCl	151	< 0.001%
N2O	41	0.201%	HBr	161	< 0.001%
CH4	61	0.186%	N2	411	< 0.001%
H2O	11	0.065%	H2S	471	< 0.001%
O3	31	${<}0.001\%$			

HDO, Kiruna, φ =69.87°, OPD=257cm, FoV=1.91mrad, boxcar apod.

Wavenumber ν in cm^{-1}

Wavenumber ν in cm^{-1}

Investigated species line position(s) ν_0 lower state energy E''_{lst} retrieved TCA, information content temperature dependence of the TCA location, date, solar zenith angle spectral interval fitted Molecule iCode Absorption			$\begin{array}{c} HDO\\ 2621.7310,\\ 403.1,\ 362.\\ 4.13E{+}21\\ -0.476\%/K\\ Kiruna,\ 15\\ 2621.170- \end{array}$	$\begin{array}{c} 2622.1060 \ cm^{-1} \\ 5 \ cm^{-1} \\ molec/cm^{2}, \ 1 \\ (trop), \ -0.002 \\ 5/Mar/97, \ 68 \\ 2622.415 \ cm^{-1} \end{array}$	m^{-1} 62.4, 165.3 2%/K (strat) 9.87° n^{-1}
Molecule	iCode	Absorption	Molecule	iCode	Absorption
CH4	61	39.131%	O3	31	0.010%
HDO	491	29.663%	N2O	41	0.005%
CO2	2 3	15.561%	SO2	91	$<\!0.001\%$
$\operatorname{Solar}(A)$		2.210%	NH3	111	$<\!0.001\%$
Solar-sim		$<\!0.001\%$	OH	131	< 0.001%
H2O	11	0.692%	HCl	151	$<\!0.001\%$
CO2	24	0.572%	N2	411	$<\!0.001\%$
HBr	161	0.013%	H2S	471	$<\!0.001\%$

 CO_2 , Kiruna, $\varphi = 69.87^o$, OPD=257cm, FoV=1.91mrad, boxcar apod.

 CH_4 , Kiruna, $\varphi = 69.87^o$, OPD=257cm, FoV=1.91mrad, boxcar apod.

Wavenumber ν in cm^{-1}

investigated species line position(s) ν_0 lower state energy E''_{lst} retrieved TCA, information content temperature dependence of the TCA location, date, solar zenith angle spectral interval fitted			: : : : :	$\begin{array}{c} CH_4 \\ 2651.0331 \\ a\\ 31.4 \\ cm^{-1} \\ 3.42E + 19 \\ r\\ +0.405\%/K \\ Kiruna, 15 \\ 2650.800 \\ -\end{array}$	cm^{-1} nolec/cm ² , 2 (trop), +0.0 /Mar/97, 69 2651.290 cm	37.2 35%/K (strat) 9.87^{o} n^{-1}
Molecule	iCode	Absorption		Molecule	iCode	Absorption
HDO	491	43.121%		O3	31	0.049%
$\mathbf{CH4}$	61	27.146%		H2O	11	$<\!0.001\%$
$\operatorname{Solar}(A)$		0.947%		SO2	91	< 0.001%
Solar-sim		0.942%		NH3	111	< 0.001%
CO2	24	0.920%		OH	131	< 0.001%
HCl	151	0.249%		HBr	161	< 0.001%
CO2	2 3	0.240%		H2S	471	$<\!0.001\%$

HDO, Kiruna, $\varphi{=}69.87^{o},$ OPD=257cm, FoV=1.91mrad, boxcar apod.

Wavenumber ν in cm^{-1}

investigated species				HDO, (CH	(4)			
line position	(s) ν_0		:	$2657.3300, (2657.7116) \ cm^{-1}$				
lower state energy E_{lst}''			:	221.8, (104.)	8) cm^{-1}			
retrieved TCA, information content			:	4.07E+21,	(3.64E+19) m	$olec/cm^2, 194.8,$	(176.9)	
temperature dependence of the TCA			:	111, (+.144	4)%/K (trop)	, +.017, (+.029)	%/K (strat)	
location, date, solar zenith angle			:	Kiruna, 15	/Mar/97, 69	0.87 ^o		
spectral interval fitted			:	$2656.910 - 2657.960 \ cm^{-1}$				
Molecule	iCode	Absorption		Molecule	iCode	Absorption		
HDO	491	30.160%		H2O	11	0.001%		
CH4	61	21.862%		SO2	91	< 0.001%		
$\operatorname{Solar}(A)$		5.082%		NH3	111	< 0.001%		
Solar-sim		0.448%		OH	131	< 0.001%		
CO2	24	0.784%		HCl	151	< 0.001%		
O3	31	0.077%		HBr	161	< 0.001%		
CO2	2 3	0.028%		H2S	471	${<}0.001\%$		

HDO, Kiruna, $\varphi{=}69.87^o,$ OPD=257cm, FoV=1.91mrad, boxcar apod.

Wavenumber ν in cm^{-1}

investigated species line position(s) ν_0 lower state energy E''_{lst} retrieved TCA, information content temperature dependence of the TCA location, date, solar zenith angle spectral interval fitted			: : : :	$\begin{array}{c} HDO\\ 2660.5120\ c\\ 217.0\ cm^{-1}\\ 4.17E{+}21\ m\\ +0.066\%/K\\ Kiruna,\ 15\\ 2660.000\ -\end{array}$	$\begin{array}{l} HDO\\ 2660.5120\ cm^{-1}\\ 217.0\ cm^{-1}\\ 4.17E+21\ molec/cm^2,\ 222.1\\ +0.066\%/K\ (trop),\ -0.005\%/K\ (strat)\\ Kiruna,\ 15/Mar/97,\ 69.87^o\\ 2660.000\ -\ 2661.400\ cm^{-1}\\ \end{array}$			
Molecule	iCode	Absorption		Molecule	iCode	Absorption		
HDO	491	31.354%		CO2	2 3	$<\!0.001\%$		
CH4	61	7.593%		SO2	91	$<\!0.001\%$		
$\operatorname{Solar}(A)$		1.169%		NH3	111	< 0.001%		
Solar-sim		< 0.001%		OH	131	< 0.001%		
CO2	24	0.605%		HCl	151	< 0.001%		
O3	31	0.102%		HBr	161	$<\!0.001\%$		
H2O	11	0.040%		H2S	471	$<\!0.001\%$		

303

HCl, Kiruna, φ =69.87°, OPD=257cm, FoV=1.91mrad, boxcar apod.

Wavenumber ν in cm^{-1}

investigated species line position(s) ν_0 lower state energy E''_{lst} retrieved TCA, information content temperature dependence of the TCA location, date, solar zenith angle spectral interval fitted			:::::::::::::::::::::::::::::::::::::::	$\begin{array}{c} HCl \\ 2727.7819 \ c \\ 583.0 \ cm^{-1} \\ 3.25E{+}15 \ m \\ -0.052\%/K \\ {\rm Kiruna, \ 15}_{\prime} \\ 2727.720 \ - \end{array}$	m^{-1} nolec/cm ² , 6 (trop), -1.22 /Mar/97, 69 2727.840 cm	5.0 1%/K (strat) 9.87° n^{-1}
Molecule	iCode	Absorption		Molecule	iCode	Absorption
CH4	61	10.284%		H2O	11	0.009%
HCl	151	5.252%		OCS	191	0.003%
HDO	491	2.419%		N2O	41	< 0.001%
$\operatorname{Solar}(A)$		1.031%		SO2	91	< 0.001%
Solar-sim		0.981%		NO2	101	< 0.001%
O3	31	0.838%		NH3	111	< 0.001%
CH4	6 2	0.637%		OH	131	< 0.001%
CO2	2 3	0.166%		HBr	161	< 0.001%
H2CO	201	0.021%		H2S	471	< 0.001%

 CH_4 , Kiruna, φ =69.87°, OPD=257cm, FoV=1.91mrad, boxcar apod.

Wavenumber ν in cm^{-1}

Wavenumber ν in cm^{-1}

investigated species line position(s) ν_0 lower state energy E''_{lst} retrieved TCA, information content temperature dependence of the TCA location, date, solar zenith angle spectral interval fitted			: CH_4 : 2742.7428 : 219.9 cm^- : 3.33E+19 : -0.029%/H : Kiruna, 1 : 2742.490 -	cm^{-1} molec/cm ² , 6 X (trop), -0.02 5/Mar/97, 6 - 2743.300 cr	607.2 20%/K (strat) 9.87^o n^{-1}
Molecule	iCode	Absorption	Molecule	iCode	Absorption
CH4	61	96.226%	H2O	11	0.021%
$\operatorname{Solar}(A)$		4.056%	OCS	191	0.004%
Solar-sim		4.001%	SO2	91	$<\!0.001\%$
O3	31	3.398%	NO2	101	$<\!0.001\%$
CO2	2 3	2.110%	NH3	111	$<\!0.001\%$
CH4	6 2	0.991%	OH	131	$<\!0.001\%$
HDO	491	0.770%	HCl	151	$<\!0.001\%$
H2CO	201	0.158%	HBr	161	$<\!0.001\%$
N2O	41	0.074%	H2S	471	$<\!0.001\%$

 H_2CO , Kiruna, φ =69.87°, OPD=257cm, FoV=1.91mrad, boxcar apod.

Wavenumber ν in cm^{-1}

Wavenumber ν in cm^{-1}

investigated	species		:	$H_2CO, (O_3)$				
line position	(s) ν_0		:	$2759.8456^{*)}, (2759.7801) \ cm^{-1}$				
lower state e	energy E_{lst}''		:	120.9, (269.2	2) cm^{-1}			
retrieved TCA, information content				1.43E+15, ((9.53E+18) m	$eolec/cm^2, 4.1, (33.7)$		
temperature dependence of the TCA				758, (182)	%/K (trop),	+.423, $(219)%/K$ (strat)		
location, date, solar zenith angle			:	Kiruna, 15	/Mar/97, 69	9.87^{o}		
spectral interval fitted			:	2759.522 - 1	$2760.100 \ cn$	n^{-1}		
Molecule	iCode	Absorption	T	Molecule	iCode	Absorption		
CH4	61	18.209%		H2O	11	0.025%		
O3	31	10.110%		SO2	91	< 0.001%		
$\operatorname{Solar}(A)$		5.644%		NO2	101	< 0.001%		
$\operatorname{Solar-sim}$		5.608%		NH3	111	< 0.001%		
CH4	6 2	1.843%		OH	131	< 0.001%		
N2O	41	1.125%		HCl	151	< 0.001%		
CO2	2 3	1.022%		HBr	161	< 0.001%		
HDO	491	0.836%		OCS	191	< 0.001%		
H2CO	201	0.557%		H2S	471	< 0.001%		

 H_2CO , Kiruna, φ =69.87°, OPD=257cm, FoV=1.91mrad, boxcar apod.

Wavenumber ν in cm^{-1}

Wavenumber ν in cm^{-1}

investigated	species		:	$H_2CO, (CH_4)$					
line position	(s) ν_0		:	$2761.1500^{*})$	2761.1500^{*} , 2761.4941^{*} , $(2761.3523) \ cm^{-1}$				
lower state e	energy E_{lst}''		:	113.7, 161.2	, $(689.9) \ cm$				
retrieved TCA, information content				9.21e14, (3.3	3e19) molec	$/cm^2, 4.9, 10.2, (377.0)$			
temperature dependence of the TCA			:	770, (057)	%/K (trop),	+4.10, (006)%/K (strat)			
location, date, solar zenith angle			:	Kiruna, 15/	'Mar/97, 69	9.87^{o}			
spectral interval fitted			:	2760.600 - 2000	2761.705 cm	n^{-1}			
Molecule	iCode	Absorption		Molecule	iCode	Absorption			
CH4	61	50.942%		H2O	11	0.025%			
O3	31	11.785%		SO2	91	< 0.001%			
CH4	6 2	1.843%		NO2	101	< 0.001%			
CO2	2 3	1.506%		NH3	111	< 0.001%			
N2O	41	1.368%		OH	131	< 0.001%			
$\operatorname{Solar}(A)$		1.080%		HCl	151	< 0.001%			
$\operatorname{Solar-sim}$		0.957%		HBr	161	< 0.001%			
H2CO	201	0.815%		OCS	191	$<\!0.001\%$			
HDO	491	0.434%		H2S	471	$<\!0.001\%$			

 H_2CO , Kiruna, φ =69.87°, OPD=257cm, FoV=1.91mrad, boxcar apod.

Wavenumber ν in cm^{-1}

investigated species line position(s) ν_0 lower state energy E_{lst}'' retrieved TCA, information content temperature dependence of the TCA location, date, solar zenith angle spectral interval fitted			$\begin{array}{rrrr} & H_2CO\\ & 2763.4963\\ & 92.6\ cm^{-1}\\ & 1.09E{+}15\\ & -0.028\%/F\\ & \text{Kiruna, 1}\\ & 2763.380 \end{array}$	H_2CO $2763.4963^{*)} cm^{-1}$ $92.6 cm^{-1}$ $1.09E+15 molec/cm^2, 3.7$ -0.028%/K (trop), $-0.289%/K$ (strat) Kiruna, 15/Mar/97, 69.87° $2763.380 - 2763.600 cm^{-1}$		
Molecule	iCode	Absorption	Molecule	iCode	Absorption	
CH4	61	12.293%	H2O	11	0.001%	
O3	31	11.358%	SO2	91	$<\!0.001\%$	
CH4	6 2	5.793%	NO2	101	$<\!0.001\%$	
$\operatorname{Solar}(A)$		0.771%	NH3	111	$<\!0.001\%$	
Solar-sim		0.503%	OH	131	$<\!0.001\%$	
HDO	491	0.618%	HCl	151	$<\!0.001\%$	
H2CO	201	0.522%	HBr	161	< 0.001%	
N2O	41	0.267%	OCS	191	< 0.001%	
CO2	2 3	0.206%	H2S	471	$<\!0.001\%$	

 H_2CO , Kiruna, $\varphi = 69.87^{\circ}$, OPD=257cm, FoV=1.91mrad, boxcar apod.

Wavenumber ν in cm^{-1}

investigated species line position(s) ν_0 lower state energy E''_{lst} retrieved TCA, information content temperature dependence of the TCA location, date, solar zenith angle spectral interval fitted			: H_2CO : 2765.845 : 73.8 cm^- : 1.22E+1 : -0.940%/ : Kiruna, : 2765.690	H_2CO 2765.8454 ^{*)} cm^{-1} 73.8 cm^{-1} 1.22E+15 $molec/cm^2$, 1.1 -0.940%/K (trop), -0.147%/K (strat) Kiruna, 15/Mar/97, 69.87° 2765.690 - 2766.055 cm^{-1}		
Molecule	iCode	Absorption	Molecule	iCode	Absorption	
<i>O</i> 3	31	12.920%	H2O	11	0.001%	
N2O	41	3.166%	SO2	91	$<\!0.001\%$	
CH4	61	2.652%	NO2	101	$<\!0.001\%$	
CH4	6 2	2.633%	NH3	111	$<\!0.001\%$	
CO2	2 3	2.516%	OH	131	$<\!0.001\%$	
HDO	491	0.979%	HCl	151	$<\!0.001\%$	
H2CO	201	0.627%	HBr	161	$<\!0.001\%$	
$\operatorname{Solar}(A)$		0.391%	H2S	471	$<\!0.001\%$	
Solar-sim		${<}0.001\%$				

HCl, Kiruna, φ =69.87°, OPD=257cm, FoV=1.91mrad, boxcar apod.

Wavenumber ν in cm^{-1}

Wavenumber ν in cm^{-1}

investigated species line position(s) ν_0 lower state energy E''_{lst} retrieved TCA, information content temperature dependence of the TCA location, date, solar zenith angle spectral interval fitted			: : : : : : : : :	HCl 2775.7612 cm^{-1} 312.7 cm^{-1} 3.07E+15 $molec/cm^2$, 185.7 -0.060%/K (trop), -0.617%/K (strat) Kiruna, 15/Mar/97, 69.87° 2775.690 - 2775.804 cm^{-1}		
Molecule	iCode	Absorption]]	Molecule	iCode	Absorption
<i>O</i> 3	31	17.754%		H2CO	201	0.174%
HCl	151	16.755%		H2O	11	0.001%
N2O	41	9.579%	,	SO2	91	$<\!0.001\%$
CH4	61	4.253%		NO2	101	$<\!0.001\%$
CO2	2 3	1.880%		NH3	111	$<\!0.001\%$
CH4	6 2	1.556%	(OH	131	$<\!0.001\%$
$\operatorname{Solar}(A)$		0.901%		HBr	161	$<\!0.001\%$
Solar-sim		0.674%	.	H2S	471	< 0.001%
HDO	491	0.593%				

 H_2CO , Kiruna, $\varphi = 69.87^{\circ}$, OPD=257cm, FoV=1.91mrad, boxcar apod.

Wavenumber ν in cm^{-1}

investigated species		:	$H_2CO, (CH_4)$					
line position(s) ν_0			:	2778.5112^{*} , (2778.6428) cm^{-1}				
lower state ϵ	energy E_{lst}''		:	$240.8, (219.9) \ cm^{-1}$				
retrieved TCA, information content			:	$1.43E+15$, (3.29E+19) $molec/cm^2$, 12.8, (409.7)				
temperature dependence of the TCA			:	-1.606, $(026)%/K$ (trop), 361 , $(020)%/K$ (strat)				
location, date, solar zenith angle			:	Kiruna, 15/Mar/97, 69.87°				
spectral interval fitted			:	$2778.220 - 2778.950 \ cm^{-1}$				
Molecule	iCode	Absorption		Molecule	iCode	Absorption		
CH4	61	46.509%		H2O	11	0.018%		
O3	31	15.555%		SO2	91	< 0.001%		
N2O	41	12.275%		NO2	101	< 0.001%		
HDO	491	2.352%		NH3	111	< 0.001%		
H2CO	201	1.440%		OH	131	< 0.001%		
CO2	2 3	1.382%		HCl	151	< 0.001%		
$\operatorname{Solar}(A)$		0.590%		HBr	161	< 0.001%		
Solar-sim		0.510%		H2S	471	$<\!0.001\%$		

 H_2CO , Kiruna, φ =69.87°, OPD=257cm, FoV=1.91mrad, boxcar apod.

320

Wavenumber ν in cm^{-1}

investigated species line position(s) ν_0 lower state energy E''_{lst} retrieved TCA, information content temperature dependence of the TCA location, date, solar zenith angle spectral interval fitted			$\begin{array}{llllllllllllllllllllllllllllllllllll$	H_2CO 2780.9519 ^{*)} cm^{-1} 329.0 cm^{-1} 1.16E+15 $molec/cm^2$, 8.0 -1.702%/K (trop), +0.332%/K (strat) Kiruna, 15/Mar/97, 69.87° 2780.800 - 2781.320 cm^{-1}		
Molecule	iCode	Absorption	Molecule	iCode	Absorption	
CH4	61	40.801%	H2O	11	0.017%	
N2O	41	14.462%	SO2	91	$<\!0.001\%$	
O3	31	12.157%	NO2	101	< 0.001%	
$\operatorname{Solar}(A)$		7.960%	NH3	111	< 0.001%	
$\operatorname{Solar-sim}$		2.217%	OH	131	< 0.001%	
CH4	6 2	3.011%	HCl	151	< 0.001%	
H2CO	201	1.944%	HBr	161	< 0.001%	
HDO	491	1.909%	H2S	471	< 0.001%	
CO2	2 3	1.013%				

 O_3 , Kiruna, $\varphi = 69.87^{\circ}$, OPD=257cm, FoV=1.91mrad, boxcar apod.

322

Wavenumber ν in cm^{-1}

investigated species line position(s) ν_0 lower state energy E''_{lst} retrieved TCA, information content temperature dependence of the TCA location, date, solar zenith angle spectral interval fitted			: : : : : : : : : : : : : : : : : : : :	O_3 2781.7734 c 8.4 cm ⁻¹ 1.02E+19 m -0.093%/K Kiruna, 15, 2781.710 -	cm^{-1} $nolec/cm^2$, 9 (trop), +0.32 /Mar/97, 69 $2781.880 \ cm$	4.9 27%/K (strat) 0.87^{o} a^{-1}
Molecule	iCode	Absorption		Molecule	iCode	Absorption
N2O	41	15.187%		H2O	11	0.020%
CH4	61	14.615%		SO2	91	< 0.001%
O3	31	9.946%		NO2	101	< 0.001%
HDO	491	2.706%		NH3	111	$<\!0.001\%$
$\operatorname{Solar}(A)$		0.921%		OH	131	$<\!0.001\%$
Solar-sim		${<}0.001\%$		HCl	151	$<\!0.001\%$
CO2	2 3	0.890%		HBr	161	< 0.001%
H2CO	201	0.303%		H2S	471	< 0.001%

 N_2O , Kiruna, φ =69.87°, OPD=257cm, FoV=1.91mrad, boxcar apod.

Wavenumber ν in cm^{-1}

Wavenumber ν in cm^{-1}

investigated species line position(s) ν_0 lower state energy E''_{lst} retrieved TCA, information content temperature dependence of the TCA location, date, solar zenith angle spectral interval fitted			: : : : :	N_2O 2806.3157 c 37.7 cm^{-1} 5.57E+18 m +0.382%/K Kiruna, 15 2806.100 -	N_2O 2806.3157 cm ⁻¹ 37.7 cm ⁻¹ 5.57E+18 molec/cm ² , 164.7 +0.382%/K (trop), +0.028%/K (strat) Kiruna, 15/Mar/97, 69.87° 2806.100 - 2806.700 cm ⁻¹		
Molecule	iCode	Absorption		Molecule	iCode	Absorption	
CH4	61	42.112%		O3	31	0.236%	
N2O	41	18.640%		H2O	11	0.009%	
CH4	6 2	1.813%		NO2	101	< 0.001%	
HDO	491	1.418%		NH3	111	< 0.001%	
$\operatorname{Solar}(A)$		0.341%		OH	131	$<\!0.001\%$	
Solar-sim		0.001%		HCl	151	$<\!0.001\%$	
H2CO	201	0.278%		H2S	471	$<\!0.001\%$	

 H_2O , Kiruna, $\varphi=69.87^o$, OPD=257cm, FoV=1.91mrad, boxcar apod.

Wavenumber ν in cm^{-1}

Wavenumber ν in cm^{-1}

investigated species				$H_2O, (CH_4)$						
line position	(s) ν_0		:	2819.4470,	$2819.4470, (2819.8338) \ cm^{-1}$					
lower state energy E_{lst}''				782.4, (10.5)	782.4, (10.5) cm^{-1}					
retrieved TCA, information content			:	5.82E + 21, (5.82E+21, (3.38E+19) molec/cm ² , 170.4, (486.6)					
temperature dependence of the TCA			:	-1.384, (+.20)	09)%/K (trop	o),019, (+.041)%/	${ m 'K}~{ m (strat)}$			
location, date, solar zenith angle			:	Kiruna, 15	/Mar/97, 69	0.87^{o}				
spectral interval fitted			:	2819.000 -	$2819.990 \ cm$	n^{-1}				
Molecule	iCode	Absorption		Molecule	iCode	Absorption				
CH4	61	74.509%		H2CO	201	0.418%				
H2O	11	25.829%		O3	31	0.077%				
HCl	15 2	9.564%		HCl	151	0.001%				
CH4	6 2	9.150%		NO2	101	$<\!0.001\%$				
N2O	41	8.835%		NH3	111	< 0.001%				
$\operatorname{Solar}(A)$		1.331%		OH	131	< 0.001%				
Solar-sim		0.939%		OCS	193	$<\!0.001\%$				
HDO	491	0.423%		H2S	471	$<\!0.001\%$				

HCl, Kiruna, φ =69.87°, OPD=257cm, FoV=1.91mrad, boxcar apod.

Wavenumber ν in cm^{-1}

investigated species line position(s) ν_0 lower state energy E''_{lst} retrieved TCA, information content temperature dependence of the TCA location, date, solar zenith angle spectral interval fitted Molecule iCode Absorption			$\begin{array}{lll} & HCl \\ & 2819.560 \\ & 125.0 \ cm \\ & 3.10E+1 \\ & -0.029\% \\ & & \\ & & \\ & & \\ & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & &$	HCl 2819.5605 cm^{-1} 125.0 cm^{-1} 3.10E+15 $molec/cm^2$, 123.8 -0.029%/K (trop), -0.077%/K (strat) Kiruna, 15/Mar/97, 69.87° 2819.500 - 2819.655 cm^{-1}		
Molecule	iCode	Absorption	Molecule	e iCode	Absorption	
CH4	61	32.993%	O3	31	0.072%	
H2O	11	25.829%	HCl	151	0.001%	
HCl	15 2	9.564%	NO2	101	$<\!0.001\%$	
N2O	41	8.248%	NH3	111	$<\!0.001\%$	
$\operatorname{Solar}(A)$		0.390%	OH	131	$<\!0.001\%$	
Solar-sim		$<\!0.001\%$	OCS	19 3	< 0.001%	
HDO	491	0.264%	H2S	471	$<\!0.001\%$	
H2CO	201	0.216%				

HCl, Kiruna, $\varphi = 69.87^{\circ}$, OPD=257cm, FoV=1.91mrad, boxcar apod.

Wavenumber ν in cm^{-1}

Wavenumber ν in cm^{-1}

investigated species line position(s) ν_0 lower state energy E''_{lst} retrieved TCA, information content temperature dependence of the TCA location, date, solar zenith angle spectral interval fitted Molecule iCode Absorption			$\begin{array}{l} HCl\\ 2821.5684\\ 125.2\ cm^-\\ 3.16E+15\\ +0.035\%/2\\ Kiruna, 18\\ 2821.440 - \end{array}$	cm^{-1} $molec/cm^2$, 2 K (trop), +0.0 5/Mar/97, 69 $\sim 2821.700 \ cm^2$	51.2 017%/K (strat) 9.87^{o} n^{-1}
Molecule	iCode	Absorption	Molecule	iCode	Absorption
CH4	61	92.592%	H2O	11	0.205%
HCl	151	26.735%	O3	31	0.087%
HDO	491	20.528%	NO2	101	< 0.001%
N2O	41	6.182%	NH3	111	< 0.001%
$\operatorname{Solar}(A)$		6.170%	OH	131	$<\!0.001\%$
Solar-sim		7.268%	OCS	19 3	$<\!0.001\%$
CH4	6 2	3.480%	H2S	471	< 0.001%
H2CO	201	0.453%			

 CH_4 , Kiruna, $\varphi = 69.87^o$, OPD=257cm, FoV=1.91mrad, boxcar apod.

Wavenumber ν in cm^{-1}

Wavenumber ν in cm^{-1}

investigated species line position(s) ν_0 lower state energy E''_{lst} retrieved TCA, information content temperature dependence of the TCA location, date, solar zenith angle spectral interval fitted			:::::::::::::::::::::::::::::::::::::::	CH_4 2835.6763 c 62.9 cm ⁻¹ 3.27E+19 r +0.385%/K Kiruna, 15 2835.500 -	CH_4 2835.6763 cm^{-1} 62.9 cm^{-1} 3.27E+19 $molec/cm^2$, 342.5 +0.385%/K (trop), +0.034%/K (strat) Kiruna, 15/Mar/97, 69.87° 2835.500 - 2835.800 cm^{-1}		
Molecule	iCode	Absorption		Molecule	iCode	Absorption	
CH4	61	82.245%		H2O	11	0.006%	
HDO	491	15.608%		NO2	101	0.001%	
$\operatorname{Solar}(A)$		2.464%		OCS	19 3	0.001%	
Solar-sim		0.888%		NH3	111	< 0.001%	
H2CO	201	0.181%		OH	131	< 0.001%	
O3	31	0.133%		HCl	151	$<\!0.001\%$	
N2O	41	0.028%		H2S	471	$<\!0.001\%$	

HCl, Kiruna, $\varphi{=}69.87^o,$ OPD=257cm, FoV=1.91mrad, boxcar apod.

Wavenumber ν in cm^{-1}

Wavenumber ν in cm^{-1}

investigated species line position(s) ν_0 lower state energy E''_{lst} retrieved TCA, information content temperature dependence of the TCA location, date, solar zenith angle spectral interval fitted Molecule iCode Absorption			:::::::::::::::::::::::::::::::::::::::	HCl 2843.6243 cm^{-1} 62.6 cm^{-1} 3.11E+15 $molec/cm^2$, 264.0 -0.050%/K (trop), +0.169%/K (strat) Kiruna, 15/Mar/97, 69.87° 2843.520 - 2843.775 cm^{-1}		
Molecule	iCode	Absorption		Molecule	iCode	Absorption
HCL	151	27.724%		OCS	19 3	0.003%
CH4	61	10.922%		NO2	101	0.001%
H2O	11	9.843%		H2CO	201	0.001%
$\operatorname{Solar}(A)$		1.925%		N2O	41	$<\!0.001\%$
Solar-sim	—	1.833%		NH3	111	$<\!0.001\%$
HDO	491	1.139%		OH	131	< 0.001%
CH4	6 2	0.628%		H2S	471	< 0.001%
O3	31	0.156%				

HDO, Kiruna, $\varphi{=}69.87^{o},$ OPD=257cm, FoV=1.91mrad, boxcar apod.

Wavenumber ν in cm^{-1}

investigated species			:	$HDO, (CH_4)$						
line position	$n(s) \nu_0$:	$2855.8740, 2855.9300, (2855.6328) \ cm^{-1}$						
lower state energy E_{lst}''				116.5, 743.1	$116.5, 743.1, (62.9) \ cm^{-1}$					
retrieved TCA, information content			:	3.69E + 21,	(3.35E+19) m	$olec/cm^2, 51.72, $	55.4, (97.7)			
temperature dependence of the TCA			:	610, (112)	%/K (trop),	+.019, (+.161)%	$ m ^{\prime}K~(strat)$			
location, date, solar zenith angle			:	Kiruna, 15/Mar/97, 69.87°						
spectral interval fitted			:	$2855.540 - 2856.400 \ cm^{-1}$						
Molecule	iCode	Absorption		Molecule	iCode	Absorption				
CH4	61	37.385%		H2O	11	0.092%				
$\operatorname{Solar}(A)$		9.523%		NO2	101	0.020%				
Solar-sim		10.199%		NH3	111	$<\!0.001\%$				
HDO	491	8.881%		OH	131	$<\!0.001\%$				
CH4	6 2	1.165%		HCl	151	$<\!0.001\%$				
O3	31	0.515%		OCS	191	$<\!0.001\%$				
H2CO	201	0.157%		H2S	471	${<}0.001\%$				

 CH_4 , Kiruna, $\varphi = 69.87^o$, OPD=257cm, FoV=1.91mrad, boxcar apod.

Wavenumber ν in cm^{-1}

investigated species line position(s) ν_0 lower state energy E''_{lst} retrieved TCA, information content temperature dependence of the TCA location, date, solar zenith angle spectral interval fitted Molecula iCoda Absorption			•••••••••••••••••••••••••••••••••••••••	CH_4 2859.9876 cm ⁻¹ 104.8 cm ⁻¹ 3.40E+19 molec/cm ² , 143.9 +0.241%/K (trop), +0.022%/K (strat) Kiruna, 15/Mar/97, 69.87° 2859.836 - 2860.214 cm ⁻¹			
Molecule	iCode	Absorption		Molecule	iCode	Absorption	
CH4	61	58.620%		NO2	101	0.035%	
$\operatorname{Solar}(A)$		1.140%		H2O	11	0.005%	
Solar-sim		0.001%		NH3	111	$<\!0.001\%$	
HDO	491	1.002%		OH	131	$<\!0.001\%$	
O3	31	0.597%		HCl	151	$<\!0.001\%$	
CH4	6 2	0.586%		OCS	191	< 0.001%	
H2CO	201	0.061%		H2S	471	< 0.001%	

 σ =0.082%, 970315S3.90, φ =69.87°, OPD=257cm, FoV=1.91mrad, Apod.=boxcar

 H_2CO , Kiruna, φ =69.87°, OPD=257cm, FoV=1.91mrad, boxcar apod.

Wavenumber ν in cm^{-1}

investigated species line position(s) ν_0 lower state energy E''_{lst} retrieved TCA, information content temperature dependence of the TCA location, date, solar zenith angle spectral interval fitted Molecule iCode Absorption			$\begin{array}{llllllllllllllllllllllllllllllllllll$	H_2CO 2869.8555, (2869.8895) cm^{-1} 190.8, (92.6) cm^{-1} 1.24E+15 $molec/cm^2$, 4.7, 3.4 -0.225%/K (trop), +0.060%/K (strat) Kiruna, 15/Mar/97, 69.87° 2869.660 - 2870.100 cm^{-1}			
Molecule	iCode	Absorption	Molecule	e iCode	Absorption		
CH4	61	16.460%	NO2	101	0.168%		
CH4	6 2	6.167%	N2O	41	0.018%		
$\operatorname{Solar}(A)$		2.779%	OCS	191	0.001%		
Solar-sim		2.748%	NH3	111	$<\!0.001\%$		
HDO	491	0.852%	OH	131	< 0.001%		
O3	31	0.620%	HCl	151	$<\!0.001\%$		
H2CO	201	0.610%	H2S	471	< 0.001%		
H2O	11	0.332%					

 NO_2 , Kiruna, $\varphi = 69.87^o$, OPD=257cm, FoV=1.91mrad, boxcar apod.

Comment: Simultaneous 3-microwindow fit

 NO_2 , Kiruna, $\varphi = 69.87^o$, OPD=257cm, FoV=1.91mrad, boxcar apod.

Wavenumber ν in cm^{-1}

Wavenumber ν in cm^{-1}

investigated species line position(s) ν_0 lower state energy E''_{lst} retrieved TCA, information content temperature dependence of the TCA location, date, solar zenith angle spectral interval fitted			:::::::::::::::::::::::::::::::::::::::	NO ₂ 2887.6673, 190.6, 190.6 2.29E+15 r -0.122%/K Kiruna, 15 2887.630 -	$\begin{array}{c} 2887.6679 \ c\\ 5 \ cm^{-1}\\ nolec/cm^{2}, \ 1\\ (\text{trop}), \ -0.089\\ /\text{Mar}/97, \ 69\\ 2887, 755, \ cm \end{array}$	m^{-1} 2.0 9%/K (strat) 9.87° a^{-1}
Molecule	iCode	Absorption	•	Molecule	iCode	Absorption
CH4	61	16.975%		H2CO	201	0.096%
$\operatorname{Solar}(A)$		1.560%		OCS	191	0.032%
Solar-sim		0.002%		NH3	111	< 0.001%
NO2	101	1.297%		OH	131	< 0.001%
HDO	491	0.481%		HCl	151	< 0.001%
O3	31	0.277%		H2S	471	< 0.001%
H2O	11	0.220%				

 NO_2 , Kiruna, $\varphi = 69.87^{\circ}$, OPD=257cm, FoV=1.91mrad, boxcar apod.

Wavenumber ν in cm^{-1}

Wavenumber ν in cm^{-1}

investigated species line position(s) ν_0 lower state energy E''_{lst} retrieved TCA, information content temperature dependence of the TCA location, date, solar zenith angle				NO ₂ 2890.3238, 134.9, 134.9 2.38E+15 n -0.050%/K	NO_2 2890.3238, 2890.3241 cm ⁻¹ 134.9, 134.9 cm ⁻¹ 2.38E+15 molec/cm ² , 12.74 -0.050%/K (trop), +0.004%/K (strat) Kiruna, 15/Mar/97, 69.87°		
location, date, solar zenith angle			:	Kiruna, $15/Mar/97$, 69.87°			
spectral interval fitted			:	2890.275 - 2890.578 Cm			
Molecule	iCode	Absorption		Molecule	iCode	Absorption	
H2O	11	43.532%		O3	31	0.310%	
CH4	61	15.203%		H2CO	201	0.137%	
HDO	491	6.055%		OCS	191	0.068%	
$\operatorname{Solar}(A)$		3.011%		NH3	111	< 0.001%	
Solar-sim		0.002%		OH	131	< 0.001%	
CH4	6 2	2.104%		HCl	151	< 0.001%	
NO2	101	1.416%		H2S	471	< 0.001%	

 CH_4 , Kiruna, $\varphi = 69.87^o$, OPD=257cm, FoV=1.91mrad, boxcar apod.

Wavenumber ν in cm^{-1}

Wavenumber ν in cm^{-1}

investigated line position lower state of retrieved TC temperature location, day spectral inte	species (s) ν_0 energy E''_{lst} CA, informate dependence te, solar zent erval fitted	tion content e of the TCA hith angle	: : : : : :	CH_4 2898.6953 c 157.1 cm ⁻¹ 3.34E+19 m +0.214%/K Kiruna, 15/ 2898.322 -	cm^{-1} $nolec/cm^2$, 1 (trop), +0.0 /Mar/97, 69 2898.985 cm	051.6 003%/K (strat) 9.87^{o} i^{-1}
Molecule	iCode	Absorption		Molecule	iCode	Absorption
CH4	61	91.293%		OCS	191	0.221%
H2O	11	2.020%		H2CO	201	0.070%
$\operatorname{Solar}(A)$		1.840%		NH3	111	< 0.001%
Solar-sim		$<\!0.001\%$		OH	131	< 0.001%
HDO	491	1.824%		HCl	151	< 0.001%
NO2	101	1.272%		H2S	471	$<\!0.001\%$
O3	31	0.984%				

 CH_4 , Kiruna, $\varphi = 69.87^o$, OPD=257cm, FoV=1.91mrad, boxcar apod.

Wavenumber ν in cm^{-1}

Wavenumber ν in cm^{-1}

investigated species			:	$CH_4, (HCl)$	(i2))			
line position(s) ν_0			:	2903.8757, (2904.1110) cm^{-1}				
lower state ϵ	energy E_{lst}''		:	219.9, $(0.0) \ cm^{-1}$				
retrieved TCA, information content			:	3.38E+19, $(3.19E+15)$ molec/cm ² , 734.4, (92.1)				
temperature dependence of the TCA			:	087, $(119)%/K$ (trop), 019 , $(+.320)%/K$ (strat)				
location, date, solar zenith angle			:	Kiruna, 15/Mar/97, 69.87°				
spectral inte	rval fitted	_	:	$2903.600 - 2904.160 \ cm^{-1}$				
Molecule	iCode	Absorption		Molecule	iCode	Absorption		
CH4	61	70.652%		NO2	101	0.372%		
H2O	11	21.937%		H2CO	201	0.041%		
HCl	15 2	6.128%		HCl	151	0.001%		
$\operatorname{Solar}(A)$		3.049%		NH3	111	< 0.001%		
Solar-sim		2.646%		OH	131	< 0.001%		
HDO	491	2.127%		CH3Cl	301	< 0.001%		
O3	31	1.329%		H2S	471	< 0.001%		
OCS	191	0.382%						

 NO_2 , Kiruna, $\varphi = 69.87^o$, OPD=257cm, FoV=1.91mrad, boxcar apod.

Wavenumber ν in cm^{-1}

Wavenumber ν in cm^{-1}

investigated species line position(s) ν_0 lower state energy E''_{lst} retrieved TCA, information content temperature dependence of the TCA location, date, solar zenith angle spectral interval fitted			: NO ₂ : 2914.64 : 46.4, 5 : 2.25E+ : -0.102% : Kiruna : 2914.59	NO_2 2914.6434 ^{*)} , 2914.6520 ^{*)} cm^{-1} 46.4, 54.6 cm^{-1} 2.25E+15 $molec/cm^2$, 12.8, 11.74 -0.102%/K (trop), +0.282%/K (strat) Kiruna, 15/Mar/97, 69.87° 2914.590 - 2914.707 cm^{-1}			
Molecule	iCode	Absorption	Molecu	ıle iCode	Absorption		
CH4	61	55.816%	H2CO	201	0.372%		
NO2	101	1.606%	OCS	191	0.314%		
$\operatorname{Solar}(A)$		1.160%	H2O	11	0.200%		
Solar-sim		0.708%	CH3C	l 301	0.001%		
CH4	6 2	1.044%	OH	131	< 0.001%		
HDO	491	0.677%	HCl	151	< 0.001%		
CH4	6 3	0.636%	C2H4	391	< 0.001%		
O3	31	0.428%	H2S	471	< 0.001%		

 NO_2 , Kiruna, $\varphi = 69.87^o$, OPD=257cm, FoV=1.91mrad, boxcar apod.

Wavenumber ν in cm^{-1}

Wavenumber ν in cm^{-1}

investigated species line position(s) ν_0 lower state energy E''_{lst} retrieved TCA, information content temperature dependence of the TCA location, date, solar zenith angle spectral interval fitted			$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	NO ₂ 2922.6261, 2922.6327, 2922.7015 cm^{-1} 237.1, 237.1, 233.9 cm^{-1} 2.18E+15 $molec/cm^2$, 5.1, 5.8, 10.6 +0.099%/K (trop), -0.300%/K (strat) Kiruna, 15/Mar/97, 69.87° 2922.599 - 2922.750 cm^{-1}		
Molecule	iCode	Absorption	Molecule	iCode	Absorption	
CH4	61	18.151%	OCS	191	0.384%	
H2O	11	5.365%	CH3Cl	301	0.003%	
HDO	491	1.578%	H2CO	201	0.002%	
CH4	6 2	1.391%	C2H4	391	0.001%	
NO2	101	0.990%	NH3	111	$<\!0.001\%$	
$\operatorname{Solar}(A)$		0.711%	OH	131	$<\!0.001\%$	
Solar-sim		0.003%	HCl	151	$<\!0.001\%$	
H2O	12	0.674%	H2S	471	< 0.001%	
O3	31	0.443%				

 $\sigma = 0.065\%$, 970315S3.90, $\varphi = 69.87^{\circ}$, OPD=257cm, FoV=1.91mrad, Apod.=boxcar

HCl (i2), Kiruna, $\varphi = 69.87^{\circ}$, OPD=257cm, FoV=1.91mrad, boxcar apod.

Wavenumber ν in cm^{-1}

Wavenumber ν in cm^{-1}

investigated	species		:	HCl(i2), (C	$CH_4)$			
line position(s) ν_0			:	2923.7322, (2923.6880) cm^{-1}				
lower state energy E_{lot}''			:	$20.8, (293.2) \ cm^{-1}$				
retrieved TCA, information content			:	2.78E+15, (3.26E+19) molec/cm ² , 159.3, (198.7)				
temperature dependence of the TCA			:	933, (582)%/K (trop),095, (+.086)%/K (strat				
location, date, solar zenith angle			:	Kiruna, 15/Mar/97, 69.87 ^o				
spectral inte	erval fitted		:	2923.625 -	2923.805 cm	n^{-1}		
Molecule	iCode	Absorption		Molecule	iCode	Absorption		
CH4	61	41.536%		H2O	11	0.195%		
HCl	15 2	10.733%		H2CO	201	0.108%		
HDO	491	1.737%		CH3Cl	301	0.003%		
$\operatorname{Solar}(A)$		0.840%		HCl	151	0.001%		
$\operatorname{Solar-sim}$		0.483%		C2H4	391	0.001%		
NO2	101	0.819%		NH3	111	< 0.001%		
CH4	6 2	0.715%		OH	131	< 0.001%		
OCS	191	0.450%		H2S	471	$<\!0.001\%$		
O3	31	0.367%						

 NO_2 , Kiruna, $\varphi = 69.87^o$, OPD=257cm, FoV=1.91mrad, boxcar apod.

Wavenumber ν in cm^{-1}

investigated species				$NO_2, (CH_4)$	(i2))				
line position(s) ν_0				2924.7844,	2924.7844, 2924.7917, (2924.8235) cm^{-1}				
lower state energy E''_{lst}				321.8, 349.2	$321.8, 349.1, \text{ small } (157.1) \ cm^{-1}$				
retrieved TCA, information content			:	2.61E + 15,	(3.07E+19) m	$olec/cm^2, 11.9, 9.9$	4, (59.5)		
temperature dependence of the TCA			:	-1.010, (358)%/K (trop),924, (+.076)%/K (strat)					
location, date, solar zenith angle			:	Kiruna, $15/Mar/97$, 69.87°					
spectral interval fitted			:	2924.750 -	2924.925 cm	n^{-1}			
Molecule	iCode	Absorption		Molecule	iCode	Absorption			
CH4	61	31.876%		O3	31	0.313%			
H2O	11	8.346%		H2CO	201	0.118%			
CH4	6 2	3.914%		HCl	151	0.003%			
HDO	491	2.533%		CH3Cl	301	0.003%			
$\operatorname{Solar}(A)$		2.169%		C2H4	391	0.001%			
$\operatorname{Solar-sim}$		1.938%		NH3	111	$<\!0.001\%$			
NO2	101	0.765%		OH	131	$<\!0.001\%$			
OCS	191	0.474%		H2S	471	$<\!0.001\%$			

 σ =0.061%, 970315S3.90, φ =69.87°, OPD=257cm, FoV=1.91mrad, Apod.=boxcar

HCl, Kiruna, $\varphi = 69.87^{\circ}$, OPD=257cm, FoV=1.91mrad, boxcar apod.

Wavenumber ν in cm^{-1}

Wavenumber ν in cm^{-1}

investigated species line position(s) ν_0 lower state energy E''_{lst} retrieved TCA, information content temperature dependence of the TCA location, date, solar zenith angle spectral interval fitted			: : : :	$\begin{array}{c} HCl\\ 2925.8967\ c\\ 20.9\ cm^{-1}\\ 3.14E{+}15\ n\\ -0.025\%/K\\ Kiruna,\ 15/\\ 2925.750\ -1\end{array}$	m^{-1} nolec/cm ² , 3 (trop), +0.30 /Mar/97, 69 2926.000 cm	$55.9 \\ 03\%/{ m K}~{ m (strat)} \\ 9.87^o \\ n^{-1}$
Molecule	iCode	Absorption		Molecule	iCode	Absorption
CH4	61	100.000%		O3	31	0.320%
CH4	6 2	42.856%		HDO	491	0.154%
HCL	151	29.654%		H2CO	201	0.128%
H2O	11	8.392%		CH3Cl	301	0.003%
$\operatorname{Solar}(A)$		2.169%		C2H4	391	0.001%
Solar-sim		1.938%		NH3	111	< 0.001%
NO2	101	0.656%		OH	131	< 0.001%
CH4	6 3	0.579%		H2S	471	< 0.001%
OCS	191	0.476%				

 H_2O , Kiruna, $\varphi = 69.87^o$, OPD=257cm, FoV=1.91mrad, boxcar apod.

Wavenumber ν in cm^{-1}

Wavenumber ν in cm^{-1}

investigated species line position(s) ν_0 lower state energy E''_{lst} retrieved TCA, information content temperature dependence of the TCA location, date, solar zenith angle spectral interval fitted Molecule iCode Absorption			$\begin{array}{l} H_2O\\ 2930.63\\ 1255.9\\ 6.10E+\\ -2.3679\\ Kiruna\\ 2930.43\\ \end{array}$	$506 \ cm^{-1} \ cm^{-1}$ -21 molec/cm ² , 6/K (trop), -0.0 , 15/Mar/97, $50 - 2931.100 \ cm^{-1}$	107.8 014%/K (strat) 69.87^{o} cm^{-1}
Molecule	iCode	Absorption	Molecu	ile iCode	Absorption
H2O	11	61.382%	NO2	101	0.186%
CH4	61	33.875%	H2CO	201	0.049%
HDO	491	2.282%	CH3C	<i>l</i> 301	0.002%
$\operatorname{Solar}(A)$		2.065%	C2H4	391	0.001%
Solar-sim		0.803%	NH3	111	< 0.001%
CH4	6 3	1.691%	OH	131	< 0.001%
O3	31	0.382%	HCl	151	$<\!0.001\%$
OCS	191	0.363%	H2S	471	< 0.001%

 CH_4 , Kiruna, $\varphi = 69.87^{\circ}$, OPD=257cm, FoV=1.91mrad, boxcar apod.

Wavenumber ν in cm^{-1}

Wavenumber ν in cm^{-1}

investigated species line position(s) ν_0 lower state energy E''_{lst} retrieved TCA, information content temperature dependence of the TCA location, date, solar zenith angle spectral interval fitted			$\begin{array}{rrrr} : & CH_4 \\ : & 2941.4116 \\ : & 470.9, (21) \\ : & 3.44E+00 \\ : & -1.519\%/\mathrm{H} \\ : & \mathrm{Kiruna, 1} \\ : & 2941.234 \end{array}$, (2941.5652) 9.9) cm ⁻¹ molec/cm ² , K (trop), -0.22 5/Mar/97, 6 - 2941.632 cm	cm^{-1} 128.7 12%/K (strat) 59.87° m^{-1}
Molecule	iCode	Absorption	Molecule	iCode	Absorption
CH4	61	21.550%	CH3Cl	301	0.006%
H2O	11	8.762%	C2H4	391	0.005%
$\operatorname{Solar}(A)$		3.210%	OCS	191	0.004%
$\operatorname{Solar-sim}$		0.003%	NO2	101	$<\!0.001\%$
CH4	6 2	2.162%	NH3	111	$<\!0.001\%$
CH4	6 3	1.233%	OH	131	$<\!0.001\%$
O3	31	0.440%	HCl	151	$<\!0.001\%$
H2CO	201	0.112%	H2S	471	$<\!0.001\%$
HDO	491	0.017%			

365

 C_2H_6 , Kiruna, $\varphi=69.87^{\circ}$, OPD=257cm, FoV=1.91mrad, boxcar apod.

Wavenumber ν in cm^{-1}

Wavenumber ν in cm^{-1}

investigated species line position(s) ν_0 lower state energy E''_{lst} retrieved TCA, information content temperature dependence of the TCA location, date, solar zenith angle spectral interval fitted			: C_2H_6 : 2976.7919 : 121.5 cm ⁻ : 3.62E+16 : +0.221\%/ : Kiruna, 1 : 2976.600 -	$^{*)} cm^{-1}$ $^{-1} molec/cm^{2}, K (trop), -0.0 (5/Mar/97, 7)$ $- 2977.100 cm^{-1}$	150.5 025%/K (strat) 70.19° m^{-1}
Molecule	iCode	Absorption	Molecule	iCode	Absorption
CH4	61	58.874%	HDO	491	0.088%
H2O	11	36.546%	CH3Cl	301	0.044%
C2H6	381	10.318%	C2H4	391	0.042%
H2O	12	3.543%	H2CO	201	0.017%
CH4	6 3	1.951%	NO2	101	$<\!0.001\%$
O3	31	1.764%	NH3	111	$<\!0.001\%$
CH4	6 2	0.565%	OH	131	$<\!0.001\%$
$\operatorname{Solar}(A)$		0.560%	HCl	151	$<\!0.001\%$
$\operatorname{Solar-sim}$		0.127%	H2S	471	< 0.001%

 C_2H_6 , Kiruna, $\varphi=69.87^{\circ}$, OPD=257cm, FoV=1.91mrad, boxcar apod.

Wavenumber ν in cm^{-1}

Wavenumber ν in cm^{-1}

investigated species line position(s) ν_0 lower state energy E''_{lst} retrieved TCA, information content temperature dependence of the TCA location, date, solar zenith angle spectral interval fitted			: : : : :	C_2H_6 2983.3760 ^{*)} 105.4 (15 to 3.27E+16 m +0.040%/K Kiruna, 15/ 2983.120 -	cm^{-1} $p = 930) cm^{-1}$ $nolec/cm^2, 22$ T (trop), +0.0 T (trop), +0.0 T (Mar/97, 70) T (2983.650 cm)	224.4 012%/K (strat) 0.19^{o} n^{-1}
Molecule	iCode	Absorption	1	Molecule	iCode	Absorption
H2O	11	98.116%		CH3Cl	301	0.062%
CH4	61	79.434%		C2H4	391	0.018%
C2H6	381	12.979%		HCl	151	0.001%
H2O	12	5.708%		H2CO	201	0.001%
O3	31	3.157%		NO2	101	< 0.001%
$\operatorname{Solar}(A)$		2.720%		NH3	111	< 0.001%
Solar-sim		2.744%		OH	131	< 0.001%
CH4	6 3	1.632%		H2S	471	< 0.001%
HDO	491	0.186%				

 C_2H_6 , Kiruna, $\varphi=69.87^{\circ}$, OPD=257cm, FoV=1.91mrad, boxcar apod.

Wavenumber ν in cm^{-1}

Wavenumber ν in cm^{-1}

investigated species line position(s) ν_0 lower state energy E''_{lst} retrieved TCA, information content temperature dependence of the TCA location, date, solar zenith angle spectral interval fitted			: : : :	C_2H_6 2986.7230 ^{*)} 87.5 cm ⁻¹ 3.55E+16 m +0.338%/K Kiruna, 15/ 2986.500 -	cm^{-1} nolec/cm ² , 1 (trop), -0.02 /Mar/97, 70 2986.932 cm	33.4 27%/K (strat) 0.19^{o} i^{-1}
Molecule	iCode	Absorption		Molecule	iCode	Absorption
H2O	11	100.000%		C2H4	391	0.041%
CH4	61	36.805%		CH3Cl	301	0.029%
C2H6	381	15.356%		NO2	101	< 0.001%
O3	31	4.043%		NH3	111	< 0.001%
CH4	6 3	1.828%		OH	131	< 0.001%
$\operatorname{Solar}(A)$		1.451%		HCl	151	< 0.001%
Solar-sim		0.005%		OCS	19 3	< 0.001%
CH4	6 2	0.988%		H2CO	201	< 0.001%
HDO	491	0.794%		H2S	471	${<}0.001\%$

 $H_2\ ^{18}O,$ Kiruna, $\varphi{=}69.87^o,$ OPD=257cm, FoV=1.91mrad, boxcar apod.

Wavenumber ν in cm^{-1}

Wavenumber ν in cm^{-1}

investigated	species		:	$H_2O(i2 = H_2^{18}O), (O_3)$						
line position	(s) ν_0		:	3019.8270,	(3019.6297)	m^{-1}				
lower state energy E_{lst}''				445.3, (226.	445.3, (226.5) cm^{-1}					
retrieved TCA, information content			:	6.68E + 21,	6.68E+21, (1.00E+19) molec/cm ² , 53.7, (191.0)					
temperature dependence of the TCA			:	868, (521	868, (521)%/K (trop), +.026, (+.067)%/K (strat)					
location, date, solar zenith angle			:	Kiruna, 15	/Mar/97, 70	0.19^{o}				
spectral interval fitted			:	3019.560 -	$3019.560 - 3019.960 \ cm^{-1}$					
Molecule	iCode	Absorption		Molecule	iCode	Absorption				
CH4	61	100.000%		H2O	1 3	1.108%				
CH4	6 2	88.758%		C2H4	391	0.033%				
O3	31	48.216%		CH3Cl	301	0.032%				
H2O	1 2	11.246%		OCS	19 3	0.001%				
H2O	11	4.036%		NO2	101	< 0.001%				
CH4	6 3	3.584%		NH3	111	$<\!0.001\%$				
HDO	491	3.424%		OH	131	$<\!0.001\%$				
$\operatorname{Solar}(A)$		1.181%		HCl	151	$<\!0.001\%$				
Solar-sim	—	0.006%		H2S	471	< 0.001%				

 O_3 , Kiruna, $\varphi = 69.87^{\circ}$, OPD=257cm, FoV=1.91mrad, boxcar apod.

374

Wavenumber ν in cm^{-1}

Investigated species line position(s) ν_0 lower state energy E''_{lst} retrieved TCA, information content temperature dependence of the TCA location, date, solar zenith angle spectral interval fitted			:::::::::::::::::::::::::::::::::::::::	$\begin{array}{l} O_3 \\ 3023.3887, \ 3023.4442, \ 3023.5052 \ cm^{-1} \\ 241.1, \ 191.7, \ 222.0 \ cm^{-1} \\ 1.00E{+}19 \ molec/cm^2, \ 103.3, \ 162.4, \ 125.3 \\ -0.149\%/K \ (trop), \ +0.125\%/K \ (strat) \\ Kiruna, \ 15/Mar/97, \ 70.19^o \\ 3023.352 \ - \ 3023.550 \ cm^{-1} \end{array}$			
Molecule	iCode	Absorption	Ĩ	Molecule	iCode	Absorption	
O3	31	56.016%		HDO	491	0.055%	
H2O	11	43.773%		C2H4	391	0.032%	
CH4	61	23.884%		OCS	193	0.001%	
H2O	12	3.959%		NO2	101	< 0.001%	
CH4	6 3	1.521%		NH3	111	< 0.001%	
$\operatorname{Solar}(A)$		0.790%		OH	131	< 0.001%	
Solar-sim		0.006%		HCl	151	< 0.001%	
CH3Cl	301	0.242%		H2S	471	< 0.001%	

 O_3 , Kiruna, $\varphi = 69.87^{\circ}$, OPD=257cm, FoV=1.91mrad, boxcar apod.

376

Wavenumber ν in cm^{-1}

investigated species line position(s) ν_0 lower state energy E''_{lst} retrieved TCA, information content temperature dependence of the TCA location, date, solar zenith angle spectral interval fitted			• • • • • •	O_3 3023.7434, 3 183.4, 287.9 9.93E+18 m -0.054%/K Kiruna, 15/ 3023.665 - 3	3023.8041 c cm^{-1} $nolec/cm^2$, 2 (trop), +0.23 (Mar/97, 70) 3023.850 cn	m^{-1} $81.1, 85.74$ $86\%/K (strat)$ 0.19^{o} n^{-1}
Molecule	iCode	Absorption	1	Molecule	iCode	Absorption
O3	31	56.016%		HDO	491	0.055%
H2O	11	43.773%		C2H4	391	0.032%
CH4	61	23.884%		OCS	193	0.001%
H2O	1 2	3.959%		NO2	101	$<\!0.001\%$
CH4	6 3	1.521%		NH3	111	< 0.001%
$\operatorname{Solar}(A)$		0.790%		OH	131	< 0.001%
Solar-sim		0.006%		HCl	151	< 0.001%
CH3Cl	301	0.242%		H2S	471	< 0.001%

Wavenumber ν in cm^{-1}

Wavenumber ν in cm^{-1}

investigated species line position(s) ν_0 lower state energy E''_{lst} retrieved TCA, information content temperature dependence of the TCA location, date, solar zenith angle spectral interval fitted			O_3 3026.7651 141.1, 156 1.01E+19 -0.194%/K Kiruna, 1 3026.630 -	, 3026.8615 c .9 cm ⁻¹ molec/cm ² , 3 5/Mar/97, 70 - 3026.950 cm	m^{-1} 226.5, 298.02 74%/K (strat) 0.19^{o} n^{-1}
Molecule	iCode	Absorption	Molecule	iCode	Absorption
O3	31	59.741%	CH3Cl	301	0.057%
H2O	11	29.107%	C2H4	391	0.016%
CH4	61	21.404%	NO2	101	$<\!0.001\%$
$\operatorname{Solar}(A)$		1.857%	NH3	111	$<\!0.001\%$
Solar-sim		0.007%	OH	131	< 0.001%
CH4	6 3	1.659%	HCl	151	< 0.001%
HCl	152	1.493%	OCS	19 3	$<\!0.001\%$
HDO	491	0.076%	H2S	471	$<\!0.001\%$

 O_3 , Kiruna, $\varphi = 69.87^{\circ}$, OPD=257cm, FoV=1.91mrad, boxcar apod.

Wavenumber ν in cm^{-1}

Wavenumber ν in cm^{-1}

investigated species line position(s) ν_0 lower state energy E''_{lst} retrieved TCA, information content temperature dependence of the TCA location_date_solar_zenith_angle				39.9866, 3.8, 30.2 0E+18 m .015%/K	$3040.1108 \ cm^{-1}$ $nolec/cm^2$, 2 (trop), +0.5	m^{-1} 49.8, 305.2 235%/K (strat)
location, date, solar zenith angle			: Kii	una, 15	/Mar/97, 70	0.19^{o}
spectral inte	erval fitted		: 303	59.890 -	3040.195 <i>cn</i>	1 1
Molecule	iCode	Absorption	Mo	lecule	iCode	Absorption
O3	31	52.367%	C2	H4	391	0.018%
CH4	61	13.475%	N^2	O	41	$<\!0.001\%$
CH4	6 3	5.146%	NG	02	101	$<\!0.001\%$
H2O	11	3.166%	NI	H3	111	$<\!0.001\%$
$\operatorname{Solar}(A)$		0.481%	OI	I	131	$<\!0.001\%$
Solar-sim		0.011%	HO	Cl	151	$<\!0.001\%$
CH3Cl	301	0.225%	H^{2}	S	471	$<\!0.001\%$
HDO	491	0.039%				

 O_3 , Kiruna, $\varphi = 69.87^{\circ}$, OPD=257cm, FoV=1.91mrad, boxcar apod.

Wavenumber ν in cm^{-1}

investigated species line position(s) ν_0 lower state energy E''_{lst} retrieved TCA, information content				O_3 3045.1987, 3045.2951 cm^{-1} 340.7, 20.9 cm^{-1} 1.01E+19 $molec/cm^2$, 155.3, 170.8 -0.020%/K (trop), +0.357%/K (strat)			
temperature dependence of the TCA location, date, solar zenith angle spectral interval fitted			:	-0.020%/K (trop), $+0.357\%/K$ (strat) Kiruna, $15/Mar/97$, 70.19° $3045.097 - 3045.350 \ cm^{-1}$			
Molecule	iCode	Absorption	ĺ	Molecule	iCode	Absorption	
O3	31	44.344%		CH3Cl	301	0.073%	
CH4	61	8.447%		C2H4	391	0.013%	
$\operatorname{Solar}(A)$		4.865%		N2O	41	0.012%	
Solar-sim		0.007%		NO2	101	< 0.001%	
H2O	11	4.186%		NH3	111	< 0.001%	
HCl	151	1.750%		OH	131	< 0.001%	
HDO	491	0.192%					

 H_2O , Kiruna, $\varphi = 69.87^{\circ}$, OPD=257cm, FoV=1.91mrad, boxcar apod.

Wavenumber ν in cm^{-1}

Wavenumber ν in cm^{-1}

investigated species line position(s) ν_0 lower state energy E''_{lst} retrieved TCA, information content temperature dependence of the TCA location, date, solar zenith angle spectral interval fitted			$\begin{array}{c} : & H \\ : & 30 \\ : & 12 \\ : & 5.0 \\ : & -2 \\ : & &$	H_2O 3061.2280 cm ⁻¹ 1201.9 cm ⁻¹ 5.66E+21 molec/cm ² , 333.5 -2.217%/K (trop), -0.015%/K (strat) Kiruna, 15/Mar/97, 70.19° 3061.000 - 3061.800 cm ⁻¹			
Molecule	iCode	Absorption	Μ	olecule	iCode	Absorption	
H2O	11	66.023%	C_{\cdot}	H3Cl	301	0.067%	
CH4	61	39.773%	N	2O	41	0.060%	
CH4	6 3	12.496%	H	DO	491	0.022%	
O3	31	3.236%	N	H3	111	$<\!0.001\%$	
$\operatorname{Solar}(A)$		2.695%	0	Η	131	$<\!0.001\%$	
Solar-sim		2.352%	H	Cl	151	< 0.001%	
H2O	13	2.558%	0	CS	191	$<\!0.001\%$	
C2H4	391	0.075%					

 CH_3D , Kiruna, $\varphi = 69.87^o$, OPD=257cm, FoV=1.91mrad, boxcar apod.

Wavenumber ν in cm^{-1}

Wavenumber ν in cm^{-1}

investigated species line position(s) ν_0 lower state energy E''_{lst} retrieved TCA, information content temperature dependence of the TCA location, date, solar zenith angle spectral interval fitted			$\begin{array}{c} CH_3D\\ 3061.4140\\ 89.9\ cm^{-1}\\ 2.09E+19\\ -0.069\%/H\\ Kiruna,\ 1\\ 3061.350\end{array}$	CH_3D $3061.4140 \ cm^{-1}$ $89.9 \ cm^{-1}$ $2.09E+19 \ molec/cm^2, \ 62.1$ $-0.069\%/K \ (trop), \ +0.029\%/K \ (strat)$ Kiruna, $15/Mar/97, \ 70.19^o$ $3061.350 \ - \ 3061.470 \ cm^{-1}$			
Molecule	iCode	Absorption	Molecule	iCode	Absorption		
H2O	11	66.023%	CH3Cl	301	0.067%		
CH4	61	39.773%	N2O	41	0.060%		
$\mathbf{CH4}$	6 3	12.496%	HDO	491	0.022%		
O3	31	3.236%	NH3	111	$<\!0.001\%$		
$\operatorname{Solar}(A)$		2.695%	OH	131	< 0.001%		
Solar-sim		2.352%	HCl	151	$<\!0.001\%$		
H2O	13	2.558%	OCS	191	$<\!0.001\%$		
C2H4	391	0.075%					

 CO_2 , Kiruna, $\varphi = 70.19^{\circ}$, OPD=257cm, FoV=1.91mrad, boxcar apod.

Wavenumber ν in cm^{-1}

investigated species line position(s) ν_0 lower state energy E''_{lst} retrieved TCA, information content temperature dependence of the TCA location, date, solar zenith angle spectral interval fitted			: : : : :	$CO_2, (O_3)$ 3161.6919, (3161.4977) cm^{-1} 273.9, (260.4) cm^{-1} 7.36E+21, (8.43E+18) $molec/cm^2$, 111.5, (33.5) 361, (162)%/K (trop),052, (228)%/K (strat) Kiruna, 15/Mar/97, 70.19° 3161.430 - 3161.930 cm^{-1}				
Molecule	iCode	Absorption		Molecule	iCode	Absorption		
$\mathbf{CO2}$	21	9.048%		C2H4	391	0.036%		
H2O	11	8.404%		CH3Cl	301	0.002%		
$\operatorname{Solar}(A)$		3.415%		N2O	41	< 0.001%		
Solar-sim		0.020%		NH3	111	< 0.001%		
<i>O</i> 3	31	3.337%		OH	131	< 0.001%		
CH4	61	0.137%		HCl	151	< 0.001%		
HDO	491	0.044%		HCN	281	< 0.001%		

 H_2O , Kiruna, $\varphi = 69.87^{\circ}$, OPD=257cm, FoV=1.91mrad, boxcar apod.

Wavenumber ν in cm^{-1}

investigated species			:	$H_2O, (H_2O(i2))$				
line position(s) ν_0				$3163.8269, 3164.1851, (3165.1010) \ cm^{-1}$				
lower state e	energy E_{lst}''		:	136.2, 709.6, (23.8) cm^{-1}				
retrieved TCA, information content			:	$6.56e21, (6.83e21) molec/cm^2, 171.0, 111.5, (54.2)$				
temperature dependence of the TCA			:	146, $(+.482)\%/K$ (trop),009, $(034)\%/K$ (strat)				
location, date, solar zenith angle			:	Kiruna, 15/Mar/97, 70.19°				
spectral interval fitted			:	$3162.820 - 3165.400 \ cm^{-1}$				
Molecule	iCode	Absorption		Molecule	iCode	Absorption		
CH4	61	94.317%		C2H4	391	0.027%		
H2O	11	74.220%		HDO	491	0.009%		
H2O	1 2	18.865%		CH3Cl	301	0.002%		
CO2	21	9.009%		NH3	111	0.001%		
<i>O</i> 3	31	5.915%		OH	131	< 0.001%		
$\operatorname{Solar}(A)$		1.639%		HCl	151	< 0.001%		
Solar-sim		1.125%		HCN	281	< 0.001%		
N2O	41	0.219%						

 H_2O , Kiruna, $\varphi = 70.19^o$, OPD=257cm, FoV=1.91mrad, boxcar apod.

Wavenumber ν in cm^{-1}

Wavenumber ν in cm^{-1}

investigated species line position(s) ν_0 lower state energy E''_{lst} retrieved TCA, information content temperature dependence of the TCA location, date, solar zenith angle spectral interval fitted			H_2O 3189.8 1059.6 5.53E -1.945 Kirun 3189.5	H_2O 3189.8770 cm ⁻¹ 1059.6 cm ⁻¹ 5.53E+21 molec/cm ² , 56.8 -1.945%/K (trop), -0.018%/K (strat) Kiruna, 15/Mar/97, 70.19° 3189.500 - 3190.420 cm ⁻¹			
Molecule	iCode	Absorption	Molec	ule iCode	Absorption		
H2O	11	21.729%	C2H4	391	0.020%		
CH4	61	9.526%	NH3	111	0.001%		
O3	31	7.233%	HDO	491	0.001%		
CO2	21	5.459%	NO	81	$<\!0.001\%$		
$\operatorname{Solar}(A)$		5.427%	OH	131	$<\!0.001\%$		
Solar-sim		0.023%	HO2	221	$<\!0.001\%$		
H2O	13	3.111%	HCN	281	$<\!0.001\%$		
N2O	41	0.074%	C2H2	40 2	< 0.001%		

 CO_2 , Kiruna, $\varphi = 70.19^o$, OPD=257cm, FoV=1.91mrad, boxcar apod.

Wavenumber ν in cm^{-1}

Wavenumber ν in cm^{-1}

investigated species line position(s) ν_0 lower state energy E''_{lst} retrieved TCA, information content temperature dependence of the TCA location, date, solar zenith angle spectral interval fitted Molecule iCode Absorption			$\begin{array}{c} CO_2\\ 3204.7604\\ 316.8\ cm^-\\ 7.52E+21\\ -0.439\%/K\\ Kiruna, 18\\ 3204.410 - \end{array}$	cm^{-1} $molec/cm^2$, 1 (trop), -0.09 5/Mar/97, 70 3205.100 cm	94.6 3%/K (strat) 0.19^{o} i^{-1}
Molecule	iCode	Absorption	Molecule	iCode	Absorption
CO2	21	13.794%	C2H4	391	0.010%
H2O	11	6.407%	HDO	491	0.007%
H2O	1 2	4.655%	NH3	111	0.001%
O3	31	0.864%	N2O	41	< 0.001%
$\operatorname{Solar}(A)$	—	0.640%	NO	81	$<\!0.001\%$
Solar-sim	—	0.022%	OH	131	$<\!0.001\%$
CH4	61	0.621%	HO2	221	$<\!0.001\%$
C2H2	401	0.031%	HCN	281	$<\!0.001\%$

Wavenumber ν in cm^{-1}

Wavenumber ν in cm^{-1}

investigated species line position(s) ν_0 lower state energy E''_{lst} retrieved TCA, information content temperature dependence of the TCA location, date, solar zenith angle spectral interval fitted Molecule iCode Absorption			$\begin{array}{llllllllllllllllllllllllllllllllllll$	$\begin{array}{c} 0 \ cm^{-1} \\ -^{-1} \end{array}$ 1 molec/cm ² , /K (trop), -0. 15/Mar/97, - 3205.910 c	165.5 006%/K (strat) 70.19° m^{-1}
Molecule	iCode	Absorption	Molecule	e iCode	Absorption
H2O	1 2	13.923%	C2H4	391	0.010%
CO2	21	13.609%	HDO	491	0.007%
H2O	11	8.853%	NH3	111	0.001%
CH4	61	1.097%	N2O	41	$<\!0.001\%$
$\operatorname{Solar}(A)$		0.916%	NO	81	$<\!0.001\%$
Solar-sim		0.365%	OH	131	$<\!0.001\%$
O3	31	0.363%	HO2	221	$<\!0.001\%$
C2H2	401	0.031%	HCN	281	$<\!0.001\%$

 H_2O , Kiruna, $\varphi = 69.87^o$, OPD=257cm, FoV=1.91mrad, boxcar apod.

Wavenumber ν in cm^{-1}

investigated species				$H_2O, (H_2C)$	$\mathcal{D}(i3))$			
line position	(s) ν_0		:	3249.4719,	(3249.9380) c	m^{-1}		
lower state energy E''_{lst}			:	982.9, (224.	.3) cm^{-1}			
retrieved TCA, information content			:	5.91E+21, (8.12E+21) molec/cm ² , 403.2, (12.7)				
temperature dependence of the TCA			:	-1.769, (+.2)	(13)%/K (trop	o),013, (004)%/	/K (strat)	
location, date, solar zenith angle			:	Kiruna, 15/Mar/97, 70.19°				
spectral interval fitted			:	3248.800 -	$3250.200 \ cm$	-1		
Molecule	iCode	Absorption		Molecule	iCode	Absorption		
H2O	11	54.966%		O3	31	0.201%		
C2H2	401	1.800%		CO2	21	0.099%		
H2O	1 3	1.429%		HDO	491	0.032%		
H2O	1 2	1.151%		NH3	111	0.001%		
$\operatorname{Solar}(A)$		1.050%		NO	81	< 0.001%		
Solar-sim		0.367%		OH	131	< 0.001%		
HCN	281	0.570%		HO2	221	< 0.001%		
CH4	61	0.417%		C2H4	391	$<\!0.001\%$		

 $C_2H_2,$ Kiruna, $\varphi{=}69.87^o,$ OPD=257cm, FoV=1.91mrad, boxcar apod.

Wavenumber ν in cm^{-1}

Wavenumber ν in cm^{-1}

investigated species line position(s) ν_0 lower state energy E''_{lst} retrieved TCA, information content temperature dependence of the TCA location, date, solar zenith angle spectral interval fitted Molecule iCode Absorption			C_2H_2 3250.6624 214.1 cm ⁻ 8.18E+15 -0.270%/K Kiruna, 15 3250.300 -	cm^{-1} $molec/cm^2$, 3 (trop), -0.00 b/Mar/97, 70 $3251.150 \ cm$	$3.9 \\ 2\%/{ m K} \ { m (strat)} \\ 0.19^o \\ n^{-1}$
Molecule	iCode	Absorption	Molecule	iCode	Absorption
H2O	11	24.153%	CO2	21	0.099%
C2H2	401	1.800%	HDO	491	0.032%
H2O	1 3	1.429%	HCN	281	0.006%
H2O	12	1.150%	NH3	111	0.001%
$\operatorname{Solar}(A)$		0.822%	NO	81	< 0.001%
Solar-sim		0.040%	OH	131	< 0.001%
CH4	61	0.417%	HO2	221	< 0.001%
O3	31	0.201%	C2H4	391	$<\!0.001\%$

HCN, Kiruna, $\varphi = 70.19^{\circ}$, OPD=257cm, FoV=1.91mrad, boxcar apod.

Wavenumber ν in cm^{-1}

Wavenumber ν in cm^{-1}

investigated species line position(s) ν_0 lower state energy E''_{lst} retrieved TCA, information content temperature dependence of the TCA location, date, solar zenith angle spectral interval fitted Molecule iCode Absorption			: : : :	$\begin{array}{l} HCN\\ 3268.2229 & c\\ 310.3 & cm^{-1}\\ 2.91E{+}15 & n\\ -0.537\%/K\\ Kiruna, & 15\\ 3267.800 & -\end{array}$	m^{-1} nolec/cm ² , 2 (trop), -0.12 /Mar/97, 7 3268.400 cm	20.3 2%/K (strat) 0.19^{o} \imath^{-1}
Molecule	iCode	Absorption		Molecule	iCode	Absorption
H2O	11	10.187%		CH4	61	0.061%
HCN	281	2.156%		N2O	4 2	0.020%
H218O	511	1.926%		HDO	491	0.012%
C2H2	401	1.925%		NH3	111	0.001%
$\operatorname{Solar}(A)$	—	0.830%		HO2	221	0.001%
$\operatorname{Solar-sim}$		0.850%		CO2	21	< 0.001%
H217O	521	0.737%		NO	81	< 0.001%
CO2	2 2	0.515%		OH	131	< 0.001%
O3	31	0.411%		HF	141	${<}0.001\%$

Note also the C_2H_2 line at $3268.5cm^{-1}$. However, more favourable windows do exist for C_2H_2 .

HCN, Kiruna, $\varphi = 69.87^{\circ}$, OPD=257cm, FoV=1.91mrad, boxcar apod.

Wavenumber ν in cm^{-1}

Wavenumber ν in cm^{-1}

investigated species line position(s) ν_0 lower state energy E''_{lst} retrieved TCA, information content temperature dependence of the TCA location, date, solar zenith angle spectral interval fitted Molecule iCode Absorption			:::::::::::::::::::::::::::::::::::::::	$\begin{array}{c} HCN \\ 3287.2483 & c \\ 106.4 & cm^{-1} \\ 3.29E{+}15 & r \\ -0.216\%/K \\ \text{Kiruna, } 15 \\ 3287.100 & - \end{array}$	cm^{-1} nolec/cm ² , 4 (trop), +0.00 /Mar/97, 70 3287.350 cm	8.6 05%/K (strat) 0.19^{o} i^{-1}
Molecule	iCode	Absorption		Molecule	iCode	Absorption
H2O	11	42.576%		CH4	61	0.024%
HCN	281	4.299%		N2O	41	0.007%
$\operatorname{Solar}(A)$		2.865%		NH3	111	0.001%
Solar-sim		2.310%		OH	131	0.001%
C2H2	401	1.020%		HO2	221	0.001%
CO2	21	0.918%		HDO	491	0.001%
O3	31	0.121%		NO	81	$<\!0.001\%$

H2O, Kiruna, $\varphi = 70.19^{\circ}$, OPD=257cm, FoV=1.91mrad, boxcar apod.

 C_2H_2 was held constant during the retrieval. The a-priori profile of C_2H_2 had been replaced with the VMR profile retrieved in the $3250cm^{-1}$ interval prior to the analysis of this microwindow.

HCN, Kiruna, $\varphi = 70.19^{\circ}$, OPD=257cm, FoV=1.91mrad, boxcar apod.

Wavenumber ν in cm^{-1}

 C_2H_2 was held constant during the retrieval of HCN. The a-priori profile of C_2H_2 had been replaced with the VMR profile retrieved in the $3250cm^{-1}$ interval prior to the analysis of this microwindow.

 $C_2H_2,$ Kiruna, $\varphi{=}69.87^o,$ OPD=257cm, FoV=1.91mrad, boxcar apod.

Wavenumber ν in cm^{-1}

Wavenumber ν in cm^{-1}

investigated species line position(s) ν_0 lower state energy E''_{lst} retrieved TCA, information content temperature dependence of the TCA location, date, solar zenith angle spectral interval fitted Molecule iCode Absorption			$\begin{array}{llllllllllllllllllllllllllllllllllll$	cm^{-1} $molec/cm^2$, 4 (trop), -1.50 5/Mar/97, 7 3305.315 cm	$^{41.0}_{3\%/{ m K}~{ m (strat)}}_{0.19^o}$
Molecule	iCode	Absorption	Molecule	iCode	Absorption
H2O	11	23.067%	<i>O</i> 3	31	0.150%
CO2	21	11.767%	N2O	41	0.115%
C2H2	401	2.430%	CH4	61	0.010%
HCN	281	1.684%	H218O	511	0.003%
CO2	2 2	1.292%	NH3	111	0.001%
H2O	13	1.017%	HO2	221	0.001%
$\operatorname{Solar}(A)$		0.801%	NO	81	< 0.001%
Solar-sim		0.547%	OH	131	< 0.001%
HDO	491	0.171%	H2S	471	< 0.001%

HCN, Kiruna, $\varphi = 69.87^{\circ}$, OPD=257cm, FoV=1.91mrad, boxcar apod.

Wavenumber ν in cm^{-1}

Wavenumber ν in cm^{-1}

investigated species line position(s) ν_0 lower state energy E''_{lst} retrieved TCA, information content temperature dependence of the TCA location, date, solar zenith angle spectral interval fitted Molecule iCode Absorption			::	$\begin{array}{c} HCN \\ 3305.5440 \ c \\ 8.9 \ cm^{-1} \\ 2.87E+15 \ r \\ -1.384\%/K \\ Kiruna, \ 15 \\ 3305.300 \ - \end{array}$	cm^{-1} $nolec/cm^2$, 1 (trop), +0.10 /Mar/97, 70 3305.800 cm	7.9 67%/K (strat) 0.19^{o} v^{-1}
Molecule	iCode	Absorption		Molecule	iCode	Absorption
CO2	21	15.177%		N2O	41	0.138%
H2O	11	12.550%		CH4	61	0.004%
$\operatorname{Solar}(A)$		5.360%		H218O	511	0.002%
Solar-sim	—	4.216%		NH3	111	0.001%
H2O	12	5.299%		HO2	221	0.001%
C2H2	401	2.430%		HDO	491	0.001%
H2O	13	2.019%		NO	81	$<\!0.001\%$
HCN	281	1.684%		OH	131	$<\!0.001\%$
CO2	2 2	1.377%		H2S	471	$<\!0.001\%$
O3	31	0.150%				

 H_2O , Kiruna, $\varphi = 69.87^{\circ}$, OPD=257cm, FoV=1.91mrad, boxcar apod.

Wavenumber ν in cm^{-1}

Wavenumber ν in cm^{-1}

investigated species line position(s) ν_0 lower state energy E''_{lst} retrieved TCA, information content temperature dependence of the TCA location, date, solar zenith angle spectral interval fitted Molecule iCode Absorption			: : : : : : : : : : : : : : : : : : : :	H_2O 3315.0430 d 1477.3 cm 5.21E+21 r -2.919%/K Kiruna, 15 3314.600	cm^{-1} nolec/cm ² , 1 (trop), -0.01 /Mar/97, 70 3315.500 cm	72.9 5%/K (strat) 0.19^{o} v^{-1}
Molecule	iCode	Absorption		Molecule	iCode	Absorption
H2O	11	44.278%		N2O	41	0.487%
CO2	21	37.015%		O3	31	0.063%
HCN	281	1.239%		HDO	491	0.013%
$\operatorname{Solar}(A)$		1.132%		CH4	61	0.001%
Solar-sim		0.568%		NH3	111	0.001%
H2O	1 2	0.980%		HO2	221	0.001%
CO2	2 2	0.930%		NO	81	< 0.001%
C2H2	401	0.748%		OH	131	< 0.001%
H2O	1 3	0.579%		H2S	471	< 0.001%

 CO_2 , Kiruna, $\varphi = 70.19^o$, OPD=257cm, FoV=1.91mrad, boxcar apod.

Wavenumber ν in cm^{-1}

investigated species line position(s) ν_0 lower state energy E''_{lst} retrieved TCA, information content temperature dependence of the TCA location, date, solar zenith angle spectral interval fitted Molecule iCode Absorption			$\begin{array}{rrrr} & CO_2 \\ & 3315.7946 \\ & 362.8 \ cm^2 \\ & 7.41E+21 \\ & -0.591\%/1 \\ & \text{Kiruna, 1} \\ & 3315.400 \end{array}$	$5 \ cm^{-1}$ -1 . $molec/cm^2$, 4 K (trop), -0.14 15/Mar/97, 70 - 3316.300 cm	40.2 8%/K (strat) 0.19^{o} v^{-1}
Molecule	iCode	Absorption	Molecule	iCode	Absorption
CO2	21	37.440%	HCN	281	0.008%
H2O	11	19.461%	CH4	61	0.001%
$\operatorname{Solar}(A)$		1.132%	NH3	111	0.001%
Solar-sim		0.568%	HO2	221	0.001%
C2H2	401	0.759%	HDO	491	0.001%
H2O	13	0.587%	NO	81	< 0.001%
N2O	41	0.494%	OH	131	< 0.001%
O3	31	0.064%	H2S	471	$<\!0.001\%$

HF, Kiruna, $\varphi = 69.96^{\circ}$, OPD=257cm, FoV=1.91mrad, boxcar apod.

Wavenumber ν in cm^{-1}

Wavenumber ν in cm^{-1}

investigated species line position(s) ν_0 lower state energy E''_{lst} retrieved TCA, information content temperature dependence of the TCA location, date, solar zenith angle spectral interval fitted Molecule iCode Absorption			: : : : : : : : : : : : : : : : : : : :	$HF \\ 4038.9625 c \\ 41.1 cm^{-1} \\ 2.40E+15 n \\ -0.785\%/K \\ Kiruna, 15/ \\ 4038.860 - 4$	m^{-1} nolec/cm ² , 2 (trop), -0.54 (Mar/97, 69 4039.050 cm	92.4 9%/K (strat) 9.96° i^{-1}
Molecule	iCode	Absorption		Molecule	iCode	Absorption
HF	141	63.636%		CO	51	< 0.001%
H2O	11	55.590%		SO2	91	< 0.001%
$\operatorname{Solar}(A)$		10.167%		NH3	111	< 0.001%
Solar-sim		10.998%		OH	131	< 0.001%
HDO	491	3.860%		HI	171	< 0.001%
CH4	61	1.163%		OCS	191	< 0.001%
N2O	41	0.121%		H2S	471	< 0.001%
O3	31	0.060%				

HF, Kiruna, $\varphi = 69.96^{\circ}$, OPD=257cm, FoV=1.91mrad, boxcar apod.

The CH_4 line data near 4109.9 cm⁻¹ are inconsistent with observations. The position and air broadening coefficients of 2 methane lines have been changed to achieve a more acceptable (though still imperfect) fit.

 CH_4 , Kiruna, φ =69.96°, OPD=257cm, FoV=1.91mrad, boxcar apod.

Wavenumber ν in cm^{-1}

Wavenumber ν in cm^{-1}

investigated species line position(s) ν_0 lower state energy E''_{lst} retrieved TCA, information content				CH_4 4126.6561, 4 104.8, 104.8	$4126.6724 \ cm^{-1}$	m^{-1}
retrieved TO	retrieved TCA, information content temperature dependence of the TCA			3.39E+19 n	$nolec/cm^2, 2$	24.6, 178.4
temperature dependence of the TCA			:	+0.248%/K	(trop), +0.0	027%/K (strat)
location, date, solar zenith angle			:	Kiruna, $15/$	Mar/97, 69	9.96°
spectral interval fitted		:	$4126.417 - 4126.775 \ cm^{-1}$			
Molecule	iCode	Absorption		Molecule	iCode	Absorption
$\mathbf{CH4}$	61	26.143%		NO2	101	< 0.001%
$\operatorname{Solar}(A)$	—	10.421%		NH3	111	$<\!0.001\%$
Solar-sim		10.460%		OH	131	$<\!0.001\%$
H2O	11	4.943%		OCS	191	$<\!0.001\%$
	101	4 1 6 0 07		$H_{2}S$	471	< 0.001%
HDO	491	4.100%		1120	411	<0.00170

HDO, Kiruna, $\varphi{=}69.96^o,$ OPD=257cm, FoV=1.91mrad, boxcar apod.

Wavenumber ν in cm^{-1}

ferreved ferre, mormation content			. 0.041 21 /	monec/em, 2	-T . <i>L</i>
temperature dependence of the TCA			: -0.422%/K	(trop), -0.09	4%/K (strat)
location, da	location, date, solar zenith angle		: Kiruna, 15	9.96^{o}	
spectral inte	erval fitted		: 4130.020 -	$4130.810\ cm$	n^{-1}
Molecule	iCode	Absorption	Molecule	iCode	Absorption
CH4	61	17.343%	NO2	101	0.001%
$\operatorname{Solar}(A)$	—	10.173%	CO	51	< 0.001%
$\operatorname{Solar-sim}$		10.575%	NH3	111	< 0.001%
H2O	11	5.250%	OH	131	< 0.001%
HDO	491	4.137%	HI	171	< 0.001%
H2O	1 2	0.948%	H2S	471	< 0.001%

0.824%

H2O

13

HDO, Kiruna, $\varphi{=}69.96^o,$ OPD=257cm, FoV=1.91mrad, boxcar apod.

Wavenumber ν in cm^{-1}

Wavenumber ν in cm^{-1}

investigated species			:	HDO			
line position(s) ν_0			:	$4144.4940 \ cm^{-1}$			
lower state energy E_{lst}''			:	$46.2 \ cm^{-1}$			
retrieved TCA, information content			:	$4.45E+21 \ molec/cm^2, \ 68.3$			
temperature dependence of the TCA			:	+0.073%/K (trop), $-0.034%/K$ (strat)			
location, date, solar zenith angle			:	Kiruna, $15/Mar/97$, 69.96°			
spectral interval fitted			:	$4144.100 - 4144.900 \ cm^{-1}$			
Molecule	iCode	Absorption		Molecule	iCode	Absorption	
Molecule H2O	iCode 11	Absorption 13.286%		Molecule CO	iCode 51	Absorption 0.001%	
Molecule H2O Solar(A)	iCode 11 —	Absorption 13.286% 8.030%		Molecule CO HF	iCode 51 141	Absorption 0.001% 0.001%	
Molecule H2O Solar(A) Solar-sim	iCode 11 	Absorption 13.286% 8.030% 8.297%		Molecule CO HF NH3	iCode 51 141 111	Absorption 0.001% 0.001% <0.001%	
Molecule H2O Solar(A) Solar-sim CH4	iCode 11 — 61	Absorption 13.286% 8.030% 8.297% 5.745%		Molecule CO HF NH3 OH	iCode 51 141 111 131	$\begin{array}{r} \mbox{Absorption} \\ 0.001\% \\ 0.001\% \\ < 0.001\% \\ < 0.001\% \end{array}$	
Molecule H2O Solar(A) Solar-sim CH4 HDO	iCode 11 — 61 491	Absorption 13.286% 8.030% 8.297% 5.745% 5.344%		Molecule CO HF NH3 OH HI	iCode 51 141 111 131 171	$\begin{array}{r} \mbox{Absorption} \\ 0.001\% \\ 0.001\% \\ < 0.001\% \\ < 0.001\% \\ < 0.001\% \end{array}$	

 H_2O , Kiruna, $\varphi = 69.96^o$, OPD=257cm, FoV=1.91mrad, boxcar apod.

Wavenumber ν in cm^{-1}

investigated species line position(s) ν_0 lower state energy E''_{lst} retrieved TCA, information content temperature dependence of the TCA location, date, solar zenith angle spectral interval fitted			: : : : : :	H_2O 4169.0640 cm ⁻¹ 508.8 cm ⁻¹ 4.65E+21 molec/cm ² , 67.9 -0.920%/K (trop), -0.020%/K (strat) Kiruna, 15/Mar/97, 69.96° 4168.902 - 4169.350 cm ⁻¹			
Molecule	iCode	Absorption		Molecule	iCode	Absorption	
CH4	61	72.649%		NO2	101	0.011%	
H2O	11	7.279%		NH3	111	< 0.001%	
HDO	491	7.124%		OH	131	< 0.001%	
$\operatorname{Solar}(A)$		3.250%		HF	141	< 0.001%	
Solar-sim		3.105%		HI	171	< 0.001%	
H2O	1 2	1.160%		H2S	471	< 0.001%	
CO	51	0.023%					

 CH_4 , Kiruna, $\varphi = 69.96^o$, OPD=257cm, FoV=1.91mrad, boxcar apod.

Wavenumber ν in cm^{-1}

Wavenumber ν in cm^{-1}

investigated	species		:	CH_4		
line position	(s) ν_0		:	4265.4212 c	m^{-1}	
lower state e	energy E_{lst}''		:	$157.1 \ cm^{-1}$		
retrieved TCA, information content			:	$3.53E+19 \ molec/cm^2, \ 376.1$		
temperature dependence of the TCA			:	+0.004%/K (trop), $-0.001%/K$ (strat)		
location, date, solar zenith angle			:	Kiruna, 15/Mar/97, 69.96°		
spectral interval fitted		:	$4265.300 - 4265.700 \ cm^{-1}$			
Molecule	iCode	Absorption	Ì	Molecule	iCode	Absorption
CH4	61	91.854%		NH3	111	< 0.001%
H2O	11	39.037%		OH	131	< 0.001%
$\operatorname{Solar}(A)$		2.170%		HF	141	< 0.001%
Solar-sim		1.540%		HI	171	< 0.001%
HDO	491	1.575%		H2S	471	< 0.001%
CO	51	0.623%				

CO, Kiruna, $\varphi{=}69.96^o,$ OPD=257cm, FoV=1.91mrad, boxcar apod.

Wavenumber ν in cm^{-1}

Wavenumber ν in cm^{-1}

investigated species			:	CO			
line position(s) ν_0			:	4274.7407 c	m^{-1}		
lower state energy E_{lst}''			:	$23.1 \ cm^{-1}$	$23.1 \ cm^{-1}$		
retrieved TCA, information content			:	$2.49E{+}18$ m	$nolec/cm^2, 1$	29.9	
temperature dependence of the TCA			:	+0.135%/K	+0.135%/K (trop), $+0.016%/K$ (strat)		
location, date, solar zenith angle			:	Kiruna, $15/Mar/97$, 69.96°			
spectral inter	rval fitted		:	$4274.600 - 4274.990 \ cm^{-1}$			
Molecule	iCode	Absorption		Molecule	iCode	Absorption	
CH4	61	51.165%		HDO	491	0.648%	
CO	51	16.854%		NH3	111	0.001%	
$\operatorname{Solar}(A)$		12.173%		OH	131	< 0.001%	
Solar-sim		12.125%		HF	141	< 0.001%	
H2O	11	1.502%		HI	171	< 0.001%	

 CH_4 , Kiruna, φ =69.96°, OPD=257cm, FoV=1.91mrad, boxcar apod.

Wavenumber ν in cm^{-1}

Wavenumber ν in cm^{-1}

investigated	species		:	CH_4			
line position	(s) ν_0		:	4277.8105 c	m^{-1}		
lower state e	energy E_{lst}''		:	$293.2 \ cm^{-1}$			
retrieved TCA, information content			:	3.30E+19 n	$3.30E+19 \ molec/cm^2, \ 241.8$		
temperature dependence of the TCA			:	-0.204%/K (trop), $-0.036%/K$ (strat)			
location, date, solar zenith angle			:	Kiruna, 15/	'Mar/97, 69	9.96°	
spectral interval fitted		:	$4277.620 - 4277.970 \ cm^{-1}$				
Molecule	iCode	Absorption		Molecule	iCode	Absorption	
CH4	61	35.202%		N2O	4 2	0.003%	
CO	51	19.310%		NH3	111	0.001%	
$\operatorname{Solar}(A)$		12.238%		OH	131	< 0.001%	
Solar-sim		12.341%		HF	141	< 0.001%	
HDO	491	0.759%		HI	171	< 0.001%	
H2O	11	0.180%					

CO, Kiruna, $\varphi = 69.96^{\circ}$, OPD=257cm, FoV=1.91mrad, boxcar apod.

Wavenumber ν in cm^{-1}

investigated	species		:	$CO, (CH_4)$						
line position	(s) ν_0		:	4285.0089,	(4285.1555) a	cm^{-1}				
lower state energy E_{lst}''				80.7, (62.9)	cm^{-1}					
retrieved TCA, information content				2.30E+18, ((3.26E+19) m	$olec/cm^2$, 140.5, (185.8)			
temperature dependence of the TCA			:	+.508, (+.15)	57)%/K (trop	(+.226)%	m o/K (strat)			
location, date, solar zenith angle			:	Kiruna, 15	Kiruna, 15/Mar/97, 69.96°					
spectral interval fitted			:	$4284.815 - 4285.250 \ cm^{-1}$						
Molecule	iCode	Absorption		Molecule	iCode	Absorption				
CH4	61	36.342%		HDO	491	0.038%				
CO	51	21.967%		NH3	111	0.001%				
$\operatorname{Solar}(A)$		13.296%		OH	131	$<\!0.001\%$				
Solar-sim	_	13.062%		HF	141	$<\!0.001\%$				
H2O	11	0.090%		HI	171	$<\!0.001\%$				

 CH_4 , Kiruna, φ =69.96°, OPD=257cm, FoV=1.91mrad, boxcar apod.

Wavenumber ν in cm^{-1}

Wavenumber ν in cm^{-1}

investigated species			:	CH_4		
line position	(s) ν_0		:	4296.1496 a	cm^{-1}	
lower state energy E''_{lst}			:	$31.4 \ cm^{-1}$		
retrieved TCA, information content			:	$3.43E+19 \ molec/cm^2, \ 136.3$		
temperature dependence of the TCA			:	+0.275%/K (trop), $+0.016%/K$ (strat)		
location, date, solar zenith angle			:	Kiruna, $15/Mar/97$, 69.96°		
spectral interval fitted			:	$4295.910 - 4296.300 \ cm^{-1}$		
Molecule	iCode	Absorption		Molecule	iCode	Absorption
CH4	61	37.951%		CO	51	0.100%
$\operatorname{Solar}(A)$		13.429%		NH3	111	0.001%
Solar-sim	—	11.898%		OH	131	$<\!0.001\%$
H2O	11	2.253%		HF	141	$<\!0.001\%$
HDO	491	0.409%		HI	171	$<\!0.001\%$

 H_2O , Kiruna, $\varphi = 65.02^o$, OPD=120cm, FoV=1.91mrad, boxcar apod.

Wavenumber ν in cm^{-1}

investigated species				H_2O		
line position(s) ν_0			:	4556.5540 c	m^{-1}	
lower state energy E_{lst}''			:	$300.4 \ cm^{-1}$		
retrieved TCA, information content			:	8.26E + 21 m	$nolec/cm^2, 1$	38.5
temperature dependence of the TCA			:	-0.090%/K	(trop), -0.03	0%/K (strat)
location, date, solar zenith angle			:	Kiruna, $1/Apr/98, 70.96^{\circ}$		
spectral interval fitted			:	$4556.140 - 4557.520 \ cm^{-1}$		
Molecule	iCode	Absorption		Molecule	iCode	Absorption
CH4	61	56.536%		O3	31	0.007%
H2O	11	31.760%		NH3	111	0.001%
$\operatorname{Solar}(A)$		1.622%		N2O	41	< 0.001%
Solar-sim		${<}0.001\%$		OH	131	< 0.001%
CO2	21	0.228%		HDO	491	< 0.001%

 H_2O , Kiruna, $\varphi = 65.02^{\circ}$, OPD=120cm, FoV=1.91mrad, boxcar apod.

investigated species line position(s) ν_0 lower state energy E''_{lst} retrieved TCA, information content temperature dependence of the TCA location, date, solar zenith angle spectral interval fitted		::	H_2O 4598.7110 c 222.1 cm ⁻¹ 9.42E+21 m +0.180%/K Kiruna, 1/A 4598 000 -	m^{-1} $nolec/cm^2$, 1 (trop), -0.04 Apr/98, 70. 4599, 380, cm	92.1 40%/K (strat) 96° a^{-1}	
Molecule	iCode	Absorption		Molecule	iCode	Absorption
H2O	11	32.541%		N2O	41	0.474%
CH4	61	9.263%		O3	31	0.067%
$\operatorname{Solar}(A)$	—	6.017%		NH3	111	< 0.001%
Solar-sim		< 0.001%		OH	131	< 0.001%
CO2	21	1.286%		HBR	161	< 0.001%
CO2	2 3	0.613%				

 H_2O , Kiruna, $\varphi=65.02^o$, OPD=120cm, FoV=1.91mrad, boxcar apod.

Wavenumber ν in cm^{-1}

investigated species			:	H_2O		
line position	(s) ν_0		:	4699.7500 c	m^{-1}	
lower state energy E_{lst}''			:	$23.8 \ cm^{-1}$		
retrieved TCA, information content			:	$9.32E+21 \ molec/cm^2, \ 251.5$		
temperature dependence of the TCA			:	+0.542%/K (trop), $-0.017%/K$ (strat)		
location, date, solar zenith angle			:	Kiruna, $1/Apr/98$, 70.96°		
spectral interval fitted			:	$4698.750 - 4700.750 \ cm^{-1}$		
Molecule	iCode	Absorption		Molecule	iCode	Absorption
H2O	11	51.380%		CH4	61	0.260%
N2O	41	4.596%		CO2	21	0.121%
$\operatorname{Solar}(A)$		1.399%		O3	31	0.007%
Solar-sim		$<\!0.001\%$		NH3	111	< 0.001%
CO2	2 2	0.889%		OH	131	< 0.001%

 N_2O , Kiruna, $\varphi=70.96^o$, OPD=120cm, FoV=1.91mrad, boxcar apod.

Wavenumber ν in cm^{-1}

investigated species			:	N_2O		
line position	$n(s) \nu_0$:	4708.0752 c	m^{-1}	
lower state of	energy E_{let}''		:	$231.2 \ cm^{-1}$		
retrieved TCA, information content			:	$5.79E + 18 \ molec/cm^2, \ 75.7$		
temperature dependence of the TCA			:	-0.205%/K (trop), -0.027%/K (strat)		
location, date, solar zenith angle			:	Kiruna, 1/2	Apr/98, 70.	96 ⁰
spectral interval fitted		:	$4707.750 - 4708.400 \ cm^{-1}$			
Molecule	iCode	Absorption	1	Mologulo	:Cada	A 1 + :
molecule	icouc	ribborption		Molecule	iCode	Absorption
H2O	11	34.661%		CH4	61	0.077%
Holecule H2O Solar(G)	11	34.661% 31.948%		CH4 O3	61 31	Absorption 0.077% <0.001%
H2O Solar(G) Solar-sim		34.661% 31.948% <0.001%		CH4 O3 NH3	61 31 111	Absorption 0.077% <0.001% <0.001%
Holecule H2O Solar(G) Solar-sim N2O	11 — 41	$\begin{array}{r} 34.661\%\\ 31.948\%\\ <0.001\%\\ 10.625\%\end{array}$		CH4 O3 NH3 OH	61 31 111 131	Absorption 0.077% <0.001% <0.001% <0.001%
Holecule H2O Solar(G) Solar-sim N2O CO2	$ \begin{array}{c} 11 \\ - \\ 41 \\ 22 \end{array} $	$\begin{array}{r} 34.661\%\\ 31.948\%\\ <0.001\%\\ 10.625\%\\ 0.981\%\end{array}$		CH4 O3 NH3 OH HBr	61 31 111 131 161	$\begin{array}{r} 0.077\% \\ < 0.001\% \\ < 0.001\% \\ < 0.001\% \\ < 0.001\% \\ < 0.001\% \end{array}$

 N_2O , Kiruna, $\varphi=70.96^o$, OPD=120cm, FoV=1.91mrad, boxcar apod.

Wavenumber ν in cm^{-1}

investigated species			:	N_2O		
line position(s) ν_0			:	$4711.4532 \ c$	m^{-1}	
lower state energy E''_{lst}			:	$176.0 \ cm^{-1}$		
retrieved TCA, information content			:	$5.79E{+}18 m$	$nolec/cm^2$, 9	9.6
temperature dependence of the TCA			:	+0.036%/K (trop), $-0.012%/K$ (strat)		
location, date, solar zenith angle			:	Kiruna, 1/Apr/98, 70.96°		
spectral interval fitted			:	$4711.110 - 4711.820 \ cm^{-1}$		
Molecule	iCode	Absorption		Molecule	iCode	Absorption
N2O	41	12.837%		CO2	21	0.128%
$\operatorname{Solar}(G)$		2.556%		H2O	11	0.086%
Solar-sim		$<\!0.001\%$		NH3	111	< 0.001%
CO2	2 2	2.133%		OH	131	< 0.001%
CH4	61	0.174%		HBr	161	< 0.001%

 CO_2 , Kiruna, $\varphi = 70.96^o$, OPD=120cm, FoV=1.91mrad, boxcar apod.

Wavenumber ν in cm^{-1}

Wavenumber ν in cm^{-1}

investigated species line position(s) ν_0 lower state energy E''_{lst} retrieved TCA, information content temperature dependence of the TCA location date solar zenith angle				$\begin{array}{c} CO_2(i3) \\ 4879.8823 \ c \\ 342.3 \ cm^{-1} \\ 7.49E+21 \ n \\ -0.576\%/K \end{array}$	m^{-1} nolec/cm ² , 1 (trop), -0.20	14.6 7%/K (strat)
location, date, solar zenith angle spectral interval fitted			:	Kiruna, $1/\text{Apr}/98$, 70.96° 4879 750 - 4880 050 cm ⁻¹		
Molecule	iCode	Absorption	1	Molecule	iCode	Absorption
CO2	21	52.102%		N2O	41	0.045%
$\mathbf{CO2}$	2 3	30.585%		HDO	491	0.042%
CO2	2 2	6.691%		CH4	61	< 0.001%
Solar(G)		2.695%		NH3	111	< 0.001%
Solar-sim		0.349%		OH	131	< 0.001%
H2O	11	0.187%				

 CO_2 , Kiruna, $\varphi = 70.96^{\circ}$, OPD=120cm, FoV=1.91mrad, boxcar apod.

Wavenumber ν in cm^{-1}

investigated species line position(s) ν_0 lower state energy E''_{lst} retrieved TCA, information content temperature dependence of the TCA location, date, solar zenith angle			:::::::::::::::::::::::::::::::::::::::	$CO_2(i3)$ 4883.5550 c 258.4 cm ⁻¹ 7.80E+21 n -0.339%/K Kiruna, 1/4	m^{-1} nolec/cm ² , 1 (trop), -0.07 Apr/98, 70.	46.4 0%/K (strat) 96°
spectral interval fitted		:	$4883.400 - 4883.750 \ cm^{-1}$			
Molecule	iCode	Absorption		Molecule	iCode	Absorption
CO2	21	52.595%		N2O	41	0.069%
$\mathbf{CO2}$	2 3	41.790%		H2O	11	0.013%
CO2	2 2	18.901%		CH4	61	< 0.001%
$\operatorname{Solar}(G)$		1.144%		NH3	111	< 0.001%
Solar-sim		< 0.001%		OH	131	< 0.001%
HDO	491	0.077%		HBr	161	< 0.001%

 CO_2 , Kiruna, $\varphi = 70.96^{\circ}$, OPD=120cm, FoV=1.91mrad, boxcar apod.

Wavenumber ν in cm^{-1}

Wavenumber ν in cm^{-1}

investigated species line position(s) ν_0 lower state energy E''_{lst} retrieved TCA, information content temperature dependence of the TCA location, date, solar zenith angle spectral interval fitted			::	$CO_2(i2)$ $4885.8159 \ cm^{-1}$ $2.3 \ cm^{-1}$ $7.45E+21 \ molec/cm^2, 248.7$ $+0.096\%/K \ (trop), +0.272\%/K \ (strat)$ Kiruna, $1/Apr/98, \ 70.96^o$ $4885.650 - 4886.050 \ cm^{-1}$		
Molecule	olecule iCode Absorption			Molecule	iCode	Absorption
CO2	21	97.730%		N2O	41	0.086%
CO2	2 2	54.593%		HDO	491	0.001%
CO2	2 3	11.097%		CH4	61	< 0.001%
H2O	11	3.733%		NH3	111	< 0.001%
Solar(G)		1.569%		OH	131	< 0.001%
Solar-sim		0.806%		HBr	161	< 0.001%

 $CO_2(i3)$, Kiruna, $\varphi = 70.96^o$, OPD=120cm, FoV=1.91mrad, boxcar apod.

Wavenumber ν in cm^{-1}

Wavenumber ν in cm^{-1}

investigated species				$CO_{2}(i3)$			
line position(s) ν_0				$4886.2409 \ cm^{-1}$			
lower state energy E''_{lst}				$203.2 \ cm^{-1}$			
retrieved TO	CA, informa	tion content	:	$7.68E+21 \ molec/cm^2, \ 196.0$			
temperature	e dependenc	e of the TCA	:	-0.236%/K (trop), $+0.004%/K$ (strat)			
location, dat	te, solar zer	ith angle	:	Kiruna, $1/2$	Kiruna, 1/Apr/98, 70.96°		
spectral interval fitted			:	$4886.020 - 4886.400 \ cm^{-1}$			
	ile iCode Absorption						
Molecule	iCode	Absorption		Molecule	iCode	Absorption	
Molecule CO2	iCode 2 3	Absorption 49.077%	+	Molecule HDO	iCode 491	Absorption 0.001%	
Molecule CO2 CO2	iCode 2 3 21	Absorption 49.077% 33.611%		Molecule HDO CH4	iCode 491 61	Absorption 0.001% <0.001%	
Molecule CO2 CO2 CO2	iCode 2 3 21 2 2	Absorption 49.077% 33.611% 4.855%		Molecule HDO CH4 NH3	iCode 491 61 111	Absorption 0.001% <0.001% <0.001%	
Molecule CO2 CO2 CO2 Solar(G)	iCode 2 3 21 2 2 —	Absorption 49.077% 33.611% 4.855% 1.569%		Molecule HDO CH4 NH3 OH	iCode 491 61 111 131	$\begin{array}{r} \mbox{Absorption} \\ \mbox{0.001\%} \\ \mbox{<} 0.001\% \\ \mbox{<} 0.001\% \\ \mbox{<} 0.001\% \end{array}$	
Molecule CO2 CO2 Solar(G) Solar-sim	iCode 2 3 21 2 2 	Absorption 49.077% 33.611% 4.855% 1.569% 0.806%		Molecule HDO CH4 NH3 OH HBr	iCode 491 61 111 131 161	$\begin{array}{r} \mbox{Absorption} \\ \mbox{0.001\%} \\ \mbox{<} 0.001\% \\ \mbox{<} 0.001\% \\ \mbox{<} 0.001\% \\ \mbox{<} 0.001\% \end{array}$	

 CO_2 , Kiruna, $\varphi = 70.96^{\circ}$, OPD=120cm, FoV=1.91mrad, boxcar apod.

Wavenumber ν in cm^{-1}

Wavenumber ν in cm^{-1}

investigated line position lower state e retrieved TC	species (s) ν_0 energy E''_{lst} CA, informa	tion content	::	$CO_2(i3)$ 4887.1232 cm ⁻¹ 186.3 cm ⁻¹ 7.85E+21 molec/cm ² , 254.0			
temperature dependence of the TCA			:	+0.060%/K (trop), $-0.012%/K$ (strat)			
location, date, solar zenith angle			:	Kiruna, $1/Apr/98, 70.96^{\circ}$			
spectral interval fitted			:	$4886.890 - 4887.370 \ cm^{-1}$			
Molecule	iCode	Absorption		Molecule	iCode	Absorption	
CO2	21	53.393%		N2O	41	0.096%	
$\mathbf{CO2}$	2 3	51.040%		HDO	491	0.003%	
CO2	2 2	5.184%		CH4	61	$<\!0.001\%$	
$\operatorname{Solar}(G)$		1.002%		NH3	111	$<\!0.001\%$	
Solar-sim		0.654%		OH	131	< 0.001%	
H2O	11	0.389%		HBr	161	< 0.001%	

 CO_2 , Kiruna, $\varphi = 70.96^{\circ}$, OPD=120cm, FoV=1.91mrad, boxcar apod.

Wavenumber ν in cm^{-1}

investigated species				CO_2		
line position(s) ν_0				$4887.6649 \ cm^{-1}$		
lower state energy E''_{lot}				994.2 cm^{-1}		
retrieved TCA, information content				$6.49E+21 \ molec/cm^2, \ 373.5$		
temperature	e dependend	ce of the TCA	:	-1.853%/K (trop), $-0.491%/K$ (strat)		
location, da	te, solar zei	nith angle	:	Kiruna, 1/Apr/98, 70.96°		
spectral interval fitted			:	$4887.330 - 4887.880 \ cm^{-1}$		
Molecule	iCode	Absorption	T	Molecule	iCode	Absorption
CO2	21	80.644%		CH4	61	< 0.001%
CO2	2 3	53.033%		NH3	111	< 0.001%
CO2	2 2	32.183%		OH	131	< 0.001%
HDO	491	0.477%		HBr	161	< 0.001%
H2O	11	0.389%		$\operatorname{Solar}(G)$		< 0.001%
N2O	41	0.106%		Solar-sim		< 0.001%

 CO_2 , Kiruna, $\varphi = 70.96^{\circ}$, OPD=120cm, FoV=1.91mrad, boxcar apod.

Wavenumber ν in cm^{-1}

investigated species				$CO_2(i3), (0)$	$CO_2(i2))$					
line position(s) ν_0				4890.5864,	$4890.5864, (4891.1846) \ cm^{-1}$					
lower state	energy E_{lst}''		:	125.9, (7.8)	cm^{-1}					
retrieved T	CA, informa	ation content	:	7.07E + 21,	7.07E+21, (7.38E+21) molec/cm ² , 242.0, (365.5)					
temperatur	e dependeno	ce of the TCA	:	$+.001, (+.176)\%/K \ ({\rm trop}), +.157, (+.140)\%/K \ ({\rm strat})$						
investigated	l species, po	osition	:	$CO_2, 4890.8$	$CO_2, 4890.8190 cm^{-1}$					
lower state	energy E_{lst}''		:	$1244.2 \ cm^{-1}$						
retrieved T	CA, informa	ation content	:	$6.12e21 \ molec/cm^2, \ 116.8$						
temperatur	e dependeno	e of the TCA	:	-2.240%/K (trop), $-0.545%/K$ (strat)						
location, date, solar zenith angle				Kiruna, 1/2	Apr/98, 70.9	96 <i>°</i>				
spectral int	erval fitted		:	4890.462 -	$4891.370 \ cm$	2^{-1}				
Molecule	iCode	Absorption		Molecule	iCode	Absorption				
CO2	2 2	86.196%		Solar-sim		< 0.001%				
CO2	99	57 370%		HDO	401	0.001%				

CO2	2 2	86.196%	Solar-sim		< 0.001%
CO2	2 3	57.370%	HDO	491	0.001%
CO2	21	33.780%	CH4	61	< 0.001%
H2O	11	12.947%	NH3	111	< 0.001%
N2O	41	0.139%	OH	131	< 0.001%
$\operatorname{Solar}(G)$		0.008%	HBr	161	< 0.001%

 CO_2 , Kiruna, $\varphi = 70.96^o$, OPD=120cm, FoV=1.91mrad, boxcar apod.

Wavenumber ν in cm^{-1}

Comment: This is not a good retrieval window for $CO_2(i3)$ because of the interference from water vapour. It is not so bad for $CO_2(i2)$ though.

 CO_2 , Kiruna, $\varphi = 70.96^o$, OPD=120cm, FoV=1.91mrad, boxcar apod.

Wavenumber ν in cm^{-1}

Wavenumber ν in cm^{-1}

investigated	species		:	$CO_2(i2), (CO_2(i3))$						
line position	(s) ν_0		:	4892.6575,	$4892.6575, (4892.2786) \ cm^{-1}$					
lower state e	energy E_{lst}''		:	16.4, (100.1)) cm^{-1}					
retrieved TCA, information content				7.47E+21, ((7.32E+21) m	$eolec/cm^2, 312.6, (192.0)$				
temperature dependence of the TCA				+.270 (+.183)	3)%/K (trop)), $+.088 (+.050)\%/K$ (strat				
location, date, solar zenith angle				Kiruna, 1/2	Apr/98, 70.	96°				
spectral interval fitted				4892.050 -	$4892.050 - 4892.950 \ cm^{-1}$					
Molecule	iCode	Absorption		Molecule	iCode	Absorption				
CO2	2 2	93.373%		N2O	41	0.165%				
CO2	2 3	59.225%		HDO	491	0.001%				
H2O	11	26.219%		CH4	61	< 0.001%				
CO2	21	22.337%		NH3	111	< 0.001%				
$\operatorname{Solar}(G)$		1.429%		OH	131	< 0.001%				
Solar-sim		${<}0.001\%$		HBr	161	$<\!0.001\%$				

 CO_2 , Kiruna, $\varphi = 70.96^o$, OPD=120cm, FoV=1.91mrad, boxcar apod.

Wavenumber ν in cm^{-1}

Wavenumber ν in cm^{-1}

investigated species				$CO_{2}(i2), (C$	$CO_2(i3))$					
line position	(s) ν_0		:	4902.2035,	$4902.2035, (4902.6309) \ cm^{-1}$					
lower state energy E''_{lst}				163.9, (4.4)	163.9, (4.4) cm^{-1}					
retrieved TCA, information content			:	7.52E + 21,	(7.29E+21) m	$olec/cm^2, 341.4, (8)$	36.1)			
temperature dependence of the TCA			:	+.044 (+.373	3)%/K (trop)	,015 (+.066)%/K	(strat)			
location, date, solar zenith angle			:	Kiruna, 1/2	Kiruna, 1/Apr/98, 70.96°					
spectral interval fitted			:	4902.000 -	$4902.000 - 4902.925 \ cm^{-1}$					
Molecule	iCode	Absorption		Molecule	iCode	Absorption				
CO2	2 2	96.896%		N2O	41	0.182%				
H2O	11	53.595%		NH3	111	0.001%				
CO2	2 3	30.697%		CH4	61	< 0.001%				
CO2	21	1.681%		OH	131	< 0.001%				
CO2	24	1.288%		HBr	161	< 0.001%				
$\operatorname{Solar}(G)$		0.861%		HDO	491	< 0.001%				
Solar-sim		0.519%								

 CO_2 , Kiruna, $\varphi = 70.96^{\circ}$, OPD=120cm, FoV=1.91mrad, boxcar apod.

 CO_2 , Kiruna, $\varphi = 70.96^o$, OPD=120cm, FoV=1.91mrad, boxcar apod.

Wavenumber ν in cm^{-1}

Wavenumber ν in cm^{-1}

investigated	species			$CO_{2}(i3)$ (C	$O_{2}(i4)$					
line position	$n(s) \nu_0$:	4919.9492, ((4920.1675) c	m^{-1}				
lower state	energy E_{let}''		:	186.3, (209.0	186.3, (209.0) cm^{-1}					
retrieved TCA, information content				7.57E + 21, (7.57E+21, (8.19E+21) molec/cm ² , 243.1, (56.9)					
temperature dependence of the TCA			:	+.132, (503))%/K (trop)	, +.022, (054) $\%/1$	K (strat)			
investigated species, position				$CO_2, 4919.7$	$CO_2, 4919.7575 cm^{-1}$					
lower state energy E_{lst}''				$1559.4 \ cm^{-1}$	$1559.4 \ cm^{-1}$					
retrieved TCA, information content			:	8.03E + 21 m	$8.03E+21 \ molec/cm^2, \ 74.7$					
temperature	e dependenc	e of the TCA	:	-2.641%/K (trop), $-0.867%/K$ (strat)						
location, da	te, solar zer	ith angle	:	Kiruna, $1/A$	Apr/98, 70.9	96 <i>°</i>				
spectral inte	erval fitted		:	4919.580 - 4	4920.280 cm					
Molecule	iCode	Absorption		Molecule	iCode	Absorption				
CO2	2 3	52.701%		CH4	61	< 0.001%				
CO2	21	15.877%		NH3	111	$<\!0.001\%$				

CO2	21	15.877%	NH3	111	< 0.001%
CO2	24	11.202%	OH	131	< 0.001%
CO2	2 2	1.906%	HBr	161	< 0.001%
H2O	11	0.945%	$\operatorname{Solar}(G)$		< 0.001%
N2O	41	0.197%	Solar-sim		< 0.001%
HDO	491	0.009%			

 CO_2 , Kiruna, $\varphi = 70.96^o$, OPD=120cm, FoV=1.91mrad, boxcar apod.

Wavenumber ν in cm^{-1}

investigated	species		:	$CO_2(i3), (C$	$CO_2(i4))$					
line position	$n(s) \nu_0$:	4922.2122,	(4921.9862)	cm^{-1}				
lower state	energy E_{lst}''		:	258.4, (174.	$258.4, (174.9) \ cm^{-1}$					
retrieved T	retrieved TCA, information content				(8.28E+21) n	$nolec/cm^2, 155.5, (53)$				
temperature dependence of the TCA			:	162, (214)	%/K (trop)	,001, (002) $\%/K$ (s				
location, date, solar zenith angle			:	Kiruna, 1/2	Apr/98, 70.	.96°				
spectral interval fitted			:	4921.886 -	$4921.886 - 4922.465 \ cm^{-1}$					
Molecule	iCode	Absorption	Ì	Molecule	iCode	Absorption				
CO2	2 3	42.670%		N2O	41	0.217%				
$\mathbf{CO2}$	24	12.467%		HDO	491	0.001%				
CO2	21	7.620%		CH4	61	< 0.001%				
H2O	11	3.058%		NH3	111	< 0.001%				
Solar(G)		1.187%		OH	131	< 0.001%				
Solar-sim		< 0.001%								

 H_2O , Kiruna, $\varphi=65.02^o$, OPD=120cm, FoV=1.91mrad, boxcar apod.

Wavenumber ν in cm^{-1}

Wavenumber ν in cm^{-1}

investigated	species		:	H_2O				
line position(s) ν_0				5652.5550 c	m^{-1}			
lower state energy E_{lst}''				$224.8 \ cm^{-1}$	$224.8 \ cm^{-1}$			
retrieved TCA, information content				$9.31E+21 \ molec/cm^2, \ 46.6$				
temperature dependence of the TCA			:	+0.347%/K (trop), $+0.044%/K$ (strat)				
location, date, solar zenith angle			:	Kiruna, $1/A$	Kiruna, $1/Apr/98, 65.02^{\circ}$			
spectral interval fitted			:	$5651.900 - 5652.914 \ cm^{-1}$				
Molecule	iCode	Absorption		Molecule	iCode	Absorption		
H2O	11	30.428%		N2O	41	0.263%		
$\operatorname{Solar}(G)$		25.321%		CO2	21	0.038%		
Solar-sim		< 0.001%		OH	131	$<\!0.001\%$		
CH4	61	2.751%		HCL	151	< 0.001%		

 CH_4 , Kiruna, φ =65.02°, OPD=120cm, FoV=1.91mrad, boxcar apod.

Wavenumber ν in cm^{-1}

investigated species			•	CH_4				
line position	(s) ν_0		:	$5829.8684 \ cm^{-1}$				
lower state energy E_{lst}''				$10.5 \ cm^{-1}$	$10.5 \ cm^{-1}$			
retrieved TCA, information content			:	$3.50E{+}19$ m	$3.50E+19 \ molec/cm^2, \ 111.3$			
temperature dependence of the TCA			:	+0.552%/K (trop), $+0.076%/K$ (strat)				
location, date, solar zenith angle			:	Kiruna, 1/2	Kiruna, 1/Apr/98, 65.02°			
spectral inte	erval fitted		:	5829.185 -	$5830.600 \ cm$	n^{-1}		
Molecule	iCode	Absorption		Molecule	iCode	Absorption		
CH4	61	30.228%		N2O	41	< 0.001%		
H2O	11	0.250%		CO	55	< 0.001%		
CO2	2 3	0.078%		OH	131	< 0.001%		
Solar(G)		0.051%		HCl	151	< 0.001%		
Solar-sim		< 0.001%						

investigated	species		:	CH_4				
line position(s) ν_0				$5907.9194 \ c$	m^{-1}			
lower state energy E''_{lst}				$104.7 \ cm^{-1}$				
retrieved TCA, information content				$3.14E{+}19 n$	$3.14E+19 \ molec/cm^2, \ 48.1$			
temperature dependence of the TCA			:	+0.188%/K	(trop), +0.0	046%/K (strat)		
location, date, solar zenith angle			:	Kiruna, $1/Apr/98, 65.02^{o}$				
spectral interval fitted			:	$5907.700 - 5908.200 \ cm^{-1}$				
Molecule	iCode	Absorption		Molecule	iCode	Absorption		
CH4	61	6.052%		N2O	41	0.048%		
H2O	11	0.231%		CO	5 2	< 0.001%		
$\operatorname{Solar}(G)$		0.131%		OH	131	$<\!0.001\%$		
Solar-sim		< 0.001%						

 CH_4 , Kiruna, $\varphi = 65.02^{\circ}$, OPD=120cm, FoV=1.91mrad, boxcar apod.

Wavenumber ν in cm^{-1}

investigated	species		:	CH_4				
line position(s) ν_0				5910.1250 c	$5910.1250 \ cm^{-1}$			
lower state energy E_{lst}''				$293.1 \ cm^{-1}$	293.1 cm^{-1}			
retrieved TCA, information content				3.53E + 19 m	$3.53E+19 \ molec/cm^2$, 75.1			
temperature dependence of the TCA			:	-0.151%/K (trop), -0.044%/K (strat)				
location, date, solar zenith angle			:	Kiruna, 1/2	Kiruna, 1/Apr/98, 65.02°			
spectral interval fitted			:	$5909.900 - 5910.525 \ cm^{-1}$				
Molecule	iCode	Absorption		Molecule	iCode	Absorption		
CH4	61	10.962%		olar-sim	980	< 0.001%		
CH4	6 2	0.534%		N2O	41	0.025%		
H2O	11	0.196%		CO	5 2	< 0.001%		
Solar(G)	970	0.151%		OH	131	< 0.001%		

 CH_4 , Kiruna, $\varphi = 65.02^o$, OPD=120cm, FoV=1.91mrad, boxcar apod.

Comment: The spectroscopic data of the water line at $5983.54cm^{-1}$ is inconsistent with observations. This line was made stronger and broader for the fit shown.

 H_2O , Kiruna, $\varphi=65.02^o$, OPD=120cm, FoV=1.91mrad, boxcar apod.

Wavenumber ν in cm^{-1}

investigated	species		:	H_2O			
line position(s) ν_0				$6011.4866 \ cm^{-1}$			
lower state energy E_{lst}''				$586.2 \ cm^{-1}$			
retrieved TCA, information content			:	$9.77E + 21 \ molec/cm^2, \ 36.1$			
temperature dependence of the TCA			:	-1.125%/K (trop), $-0.013%/K$ (strat)			
location, date, solar zenith angle			:	Kiruna, 1/.	Apr/98, 65.	02^{o}	
spectral interval fitted			:	$6011.078 - 6012.500 \ cm^{-1}$			
Molecule	iCode	Absorption		Molecule	iCode	Absorption	
Solar(G)		8.868%		CO2	21	1.207%	
Solar-sim		$<\!0.001\%$		CO	51	< 0.001%	
H2O	11	7.569%		OH	131	< 0.001%	
CH4	61	1.684%					

Wavenumber ν in cm^{-1}

Wavenumber ν in cm^{-1}

investigated	species		:	$: CH_4$				
line position(s) ν_0				6055.5279 c	m^{-1}			
lower state energy E_{lst}''				$62.7 \ cm^{-1}$				
retrieved TCA, information content				$3.79E+19 \ molec/cm^2, \ 33.1$				
temperature dependence of the TCA			:	+0.096%/K	+0.096%/K (trop), $+0.083%/K$ (strat)			
location, date, solar zenith angle			:	Kiruna, $1/2$	Kiruna, $1/Apr/98, 65.02^{\circ}$			
spectral interval fitted			:	6055.300 -	6055.725 <i>cn</i>	n^{-1}		
Molecule	iCode	Absorption	1	Molecule	iCode	Absorption		
CH4	61	7.749%		H2O	11	0.019%		
CO2	21	1.238%		CO	51	< 0.001%		
$\operatorname{Solar}(G)$		0.284%		OH	131	< 0.001%		
Solar-sim		< 0.001%		HI	171	< 0.001%		

 CO_2 , Kiruna, $\varphi = 65.02^o$, OPD=120cm, FoV=1.91mrad, boxcar apod.

investigated	species		:	$: CO_2$				
line position(s) ν_0				6072.8428 c	m^{-1}			
lower state energy E_{lst}''				$7.8 \ cm^{-1}$				
retrieved TCA, information content				$6.38E+21 \ molec/cm^2, \ 142.0$				
temperature dependence of the TCA			:	+0.331%/K	+0.331%/K (trop), $+0.073%/K$ (strat)			
location, date, solar zenith angle			:	Kiruna, 1/2	Kiruna, $1/Apr/98, 65.02^{\circ}$			
spectral interval fitted			:	$6072.550 - 6073.250 \ cm^{-1}$				
Molecule	iCode	Absorption		Molecule	iCode	Absorption		
CO2	21	17.508%		H2O	11	0.258%		
$\operatorname{Solar}(G)$		2.104%		CO	51	< 0.001%		
Solar-sim		< 0.001%		OH	131	< 0.001%		
CH4	61	0.914%						

 CO_2 , Kiruna, $\varphi = 65.02^o$, OPD=120cm, FoV=1.91mrad, boxcar apod.

multiple position(s) ν_0			•	0000.0000 CIII		
lower state energy E_{lst}''				$60.9 \ cm^{-1}$		
retrieved TCA, information content				$6.30E+21 \ molec/cm^2, \ 325.8$		
temperature dependence of the TCA			:	+0.256%/K (trop), $+0.034%/K$ (strat)		
location, date, solar zenith angle			:	Kiruna, $1/Apr/98, 65.02^{o}$		
spectral interval fitted			:	$6085.500 - 6086.300 \ cm^{-1}$		
Molecule	iCode	Absorption		Molecule	iCode	Absorption
CO2	21	39.618%		H2O	11	0.001%
CH4 61 $9.247%$				CO	51	$<\!0.001\%$
$\operatorname{Solar}(G)$		1.680%		OH	131	< 0.001%
Solar-sim		< 0.001%		HI	171	< 0.001%

 CO_2 , Kiruna, $\varphi = 65.02^o$, OPD=120cm, FoV=1.91mrad, boxcar apod.

Wavenumber ν in cm^{-1}

investigated species				CO_2		
line position(s) ν_0			:	$6098.7790 \ cm^{-1}$		
lower state energy E''_{lot}			:	$362.8 \ cm^{-1}$		
retrieved TCA, information content			:	$5.96E+21 \ molec/cm^2, \ 124.3$		
temperature dependence of the TCA			:	-0.484%/K (trop), $-0.120%/K$ (strat)		
location, date, solar zenith angle			:	Kiruna, $1/Apr/98, 65.02^{o}$		
spectral interval fitted			:	$6098.575 - 6099.050 \ cm^{-1}$		
Molecule	iCode	Absorption		Molecule	iCode	Absorption
CO2	21	17.347%		CO2	2 2	0.597%
CH4	61	7.099%		CO	51	< 0.001%
H2O	11	5.272%		OH	131	< 0.001%
$\operatorname{Solar}(G)$		4.017%		HI	171	< 0.001%
Solar-sim		< 0.001%				

 H_2O , Kiruna, $\varphi=65.02^o$, OPD=120cm, FoV=1.91mrad, boxcar apod.

Wavenumber ν in cm^{-1}

investigated species			:	H_2O		
line position(s) ν_0			:	$6099.2974 \ cm^{-1}$		
lower state energy E_{lst}''			:	$136.8 \ cm^{-1}$		
retrieved TCA, information content			:	$1.24E+22 \ molec/cm^2, \ 34.9$		
temperature dependence of the TCA			:	+0.056%/K (trop), $-0.008%/K$ (strat)		
location, date, solar zenith angle			:	Kiruna, $1/Apr/98, 65.02^{\circ}$		
spectral interval fitted			:	$6098.950 - 6099.820 \ cm^{-1}$		
Molecule	iCode	Absorption		Molecule	iCode	Absorption
CO2	21	19.120%		CH4	61	0.408%
$\operatorname{Solar}(G)$		5.929%		CO	51	< 0.001%
Solar-sim		< 0.001%		OH	131	< 0.001%
H2O	11	5.268%		HI	171	< 0.001%
CO2	2 2	1.480%				

 CH_4 , Kiruna, φ =65.02°, OPD=120cm, FoV=1.91mrad, boxcar apod.

Wavenumber ν in cm^{-1}

investigated species				CH_4		
line position(s) ν_0				$6105.6261 \ cm^{-1}$		
lower state energy E''_{lot}				$470.7 \ cm^{-1}$		
retrieved TCA, information content			:	$3.86E + 19 \ molec/cm^2, \ 270.5$		
temperature dependence of the TCA			:	-0.579%/K (trop), $-0.133%/K$ (strat)		
location, date, solar zenith angle			:	Kiruna, $1/Apr/98, 65.02^{\circ}$		
spectral interval fitted			:	$6105.300 - 6105.840 \ cm^{-1}$		
Molecule	iCode	Absorption		Molecule	iCode	Absorption
CH4	61	52.874%		CO2	2 3	0.630%
CO2	21	5.674%		H2O	11	0.002%
$\operatorname{Solar}(G)$		1.049%		CO	51	< 0.001%
Solar-sim		$<\!0.001\%$		OH	131	< 0.001%

investigated species				CO_2		
line position(s) ν_0				$6191.1724 \ cm^{-1}$		
lower state energy E''_{let}				$639.6 \ cm^{-1}$		
retrieved TCA, information content			:	$7.30E+21 \ molec/cm^2, \ 290.8$		
temperature dependence of the TCA			:	-1.008%/K (trop), $-0.295%/K$ (strat)		
location, date, solar zenith angle			:	Kiruna, $1/Apr/98, 65.02^{\circ}$		
spectral interval fitted			:	$6190.800 - 6191.500 \ cm^{-1}$		
Molecule	iCode	Absorption		Molecule	iCode	Absorption
CO2	21	34.878%		N2O	41	$<\!0.001\%$
$\operatorname{Solar}(G)$		0.073%		CO	51	$<\!0.001\%$
Solar-sim		$<\!0.001\%$		CH4	61	< 0.001%
H2O	11	0.002%		OH	131	$<\!0.001\%$

 CO_2 , Kiruna, $\varphi = 65.02^{\circ}$, OPD=120cm, FoV=1.91mrad, boxcar apod.

Wavenumber ν in cm^{-1}

investigated	species		:	CO_2					
line position	(s) ν_0		:	$6254.6668 \ cm^{-1}$					
lower state e	energy E_{lst}''		:	$704.3 \ cm^{-1}$	$704.3 \ cm^{-1}$				
retrieved TC	CA, informa	tion content	:	$6.79E+21 \ molec/cm^2, \ 201.8$					
temperature	dependenc	e of the TCA	:	-1.233%/K (trop), $-0.297%/K$ (strat)					
location, date, solar zenith angle			:	Kiruna, $1/Apr/98, 65.02^{\circ}$					
spectral interval fitted			:	$6254.200 - 6254.920 \ cm^{-1}$					
Molecule	iCode	Absorption		Molecule	iCode	Absorption			
CO2	21	40.025%		N2O	41	0.005%			
$\operatorname{Solar}(G)$		11.248%		CO	51	0.004%			
Solar-sim		${<}0.001\%$		O2	71	$<\!0.001\%$			
CO2	2 2	5.819%		OH	131	$<\!0.001\%$			
H2O	11	0.895%		HI	171	$<\!0.001\%$			

 CO_2 , Kiruna, $\varphi = 65.02^o$, OPD=120cm, FoV=1.91mrad, boxcar apod.

 CO_2 , Kiruna, $\varphi = 65.02^{\circ}$, OPD=120cm, FoV=1.91mrad, boxcar apod.

~P				0 -0 0 0 0 0	
Molecule	iCode	Absorption	Molecule	iCode	Absorption
CO2	21	35.967%	N2O	41	$<\!0.001\%$
$\operatorname{Solar}(N)$		1.243%	OH	131	< 0.001%
Solar-sim		< 0.001%	HI	171	< 0.001%
H2O	11	0.063%			

investigated	species		:	H_2O					
line position	$n(s) \nu_0$:	$6700.0889 \ cm^{-1}$					
lower state	energy E_{lst}''		:	$300.4 \ cm^{-1}$	$300.4 \ cm^{-1}$				
retrieved T	CA, informa	ation content	:	$1.02E+22 \ molec/cm^2, \ 216.4$					
temperature	e dependenc	e of the TCA	:	-0.118%/K (trop), $-0.020%/K$ (strat)					
location, date, solar zenith angle				Kiruna, $1/Apr/98, 65.02^{\circ}$					
spectral inte	erval fitted		:	$6699.375 - 6700.920 \ cm^{-1}$					
Molecule	iCode	Absorption		Molecule	iCode	Absorption			
H2O	11	69.854%		CO2	21	0.678%			
$\operatorname{Solar}(N)$	—	1.394%		OH	131	< 0.001%			
Solar-sim		< 0.001%							

End of Main section.

A Comparison of Kiruna spectra with other selected observation sites

The simulated spectra in the main section of this work depict only one particular observation geometry for one observation site for one particular day. It is beyond the scope of this work to provide complete scenarios for a full range of different observation locations, altitudes, seasons, etc, etc. This appendix tries to meet some of these shortcomings by comparing the observed Kiruna ground-based spectra in 5 selected micro-windows with comparable observations from a number of other well-established sites and mobile observation platforms.

Many colleagues have followed our call to provide us with sample spectra resulting in a near-complete list of scientific groups and observation sites that make up the NDSC-IRWG (Network for Detection of Stratospheric Change Infra-Red Working Group http:// www.ndsc.ws). Volunteer participants were asked to provide one typical example spectrum each for the $ClONO_2$ window near $780.2cm^{-1}$, the HNO_3 windows from 865 to $875cm^{-1}$, the HCl window near $2925.9cm^{-1}$, the HF window near $4038.9cm^{-1}$ and one sample each for a humid and a dry day for the HDO window near $2612.5cm^{-1}$. Participants were also asked to match the spectral resolution of $0.004cm^{-1}$, an integration time of approximately 10 minutes and an astronomical solar zenith angle of close to 70° where possible.

Additionally, participants were encouraged to provide unique spectra of particular interest. In this latter category we are able to present lunar spectra, spectra featuring the signatures of polar stratospheric ice clouds (PSCs), spectra recorded from aboard aircrafts, an event of tropospheric HCl pollution, solar spectra recorded through the plume of bushfires, spectra taken more than 20 years apart, and ship-borne spectra recorded near the equator. Many thanks to everyone involved. This is to our knowledge the first time such an overview with global geographical coverage has been attempted.

A.1 Description of participating observation sites

In table A1.1 we give an overview over the locations and elevations of established NDSC or NDSC related observation sites, many of which provided sample spectra. The global network spans from pole to pole but is sparse in the tropical region. In the following paragraphs we provide some information on the sites and research groups that sent sample spectra followed by a graphical representation of their data. In some cases the sample spectra were subjected to a minor frequency re-calibration before plotting to ease direct comparison with the Kiruna spectra. The sites are discussed in order of latitude from north to south. For details on the stations and research groups, please consult the Literature list or visit the NDSC home-page at http://www.ndsc.ws.

A.1.1 Eureka, Canadian Arctic

Spectra from the Eureka site were provided by Hans Fast and Richard L. Mittermeier, Meteorological Service of Canada, 4905 Dufferin Street, Toronto, ON., M3H 5T4, Canada and their collaboration partner Yukio Makino, Japan Meteorological Agency, 1-3-4, Ote-Machi, Chiyoda-ku, Tokyo, 100-8122 Japan. The site in the high Canadian Arctic is equipped with a commercial Bomem DA-8 spectrometer typically operated at a maximum optical path difference (OPD) of 250cm. The instrument is one of the few instruments in the NDSC community capable of lunar observations – a valuable feature in a location where polar night lasts several months. For more details on the instrument and observation site see (Fast et al., 2000, Makino et al., 2000, Bell, 2001).

Table A1.1: List of established observation sites (most of which have NDSC status) and the location of 2 campaigns using mobile instruments (indicated by $^{*)}$). The observation sites are ordered by latitude.

Observation site	Latitude	Longitude	Elevation
Eureka, Canada	80.05 o N	86.42 $^o \mathrm{W}$	610m
Ny-Ålesund, Spitsbergen	78.92 o N	11.94 °E	20m
Kiruna, Sweden	67.84 $^o{\rm N}$	20.41 °E	419m
Poker Flat RR, Alaska	65.119^o N	$147.433^o \mathrm{W}$	505m
Harestua, Norway	60.217^o N	10.753^o E	596m
Bremen, Germany	53.107^o N	8.854^{o} E	27m
Jetstream campaign $(NPL)^{*)}$	$\approx 52.0^{o} \mathrm{N}$	$\approx 1.0^{o} \mathrm{W}$	8000m
NPL Teddington, UK	$51.424^o{\rm N}$	$0.343^o \mathrm{W}$	30m
Zugspitze, German Alps	$47.422^o \mathrm{N}$	10.987^{o} E	2964m
Jungfraujoch, Swiss Alps	$46.549^o{\rm N}$	7.986^{o} E	3580m
Moshiri, Japan	$44.367^o{\rm N}$	142.267^{o} E	280m
Toronto, Canada	43.66 o N	79.40 $^o\mathrm{W}$	174m
Rikubetsu, Japan	$43.457^o{\rm N}$	$143.766^o{\rm E}$	370m
Mt Bancroft, California	$37.584^o{\rm N}$	$118.235^o \mathrm{W}$	3801m
Denver, Colorado	36.673^o N	$104.963^o \mathrm{W}$	1643m
Billings, Oklahoma	36.605^o N	$97.485^o \mathrm{W}$	317m
Tsukuba, Japan	$36.048^o{\rm N}$	$140.116^{o}\mathrm{E}$	31m
Table Mountain, California	34.382^o N	117.677^o W	2258m
JPL Pasadena, California	$34.200^o \mathrm{N}$	$118.172^o \mathrm{W}$	350m
Kitt Peak, Arizona	31.90 o N	111.60 <i>°</i> W	2090m
Teneriffe, Canarian Islands	$28.294^o{\rm N}$	$16.490^o {\rm W}$	2367m
Mauna Loa, Hawaii	19.539^o N	$155.578^o \mathrm{W}$	3398m
2.8 and 12.8°S. Polarstern cruise $(AWI)^{*}$	$2.812.8^o\mathrm{S}$	$25.5^{o}W$	20m
Maido Summit, Reunion	$21.071^o { m S}$	55.387^{o} E	2203m
Wollongong, Australia	34.45 °S	150.88 °E	30m
Lauder, New Zealand	45.045^o S	169.684^{o} E	370m
Arrival Heights, Antarctica	77.83 °S	166.67 ^о Е	200m
South Pole, Antarctica	89.83 ^o S		2850m

In addition to this list NASA's space-borne ATMOS instrument that provided many of the solar spectra shown in the main part of the atlas ought to be mentioned.

A.1.2 Ny-Ålesund, Svalbard (European Arctic)

The Ny-Ålesund site is operated by the Alfred–Wegener Institute for Polar and Marine Research in Potsdam, Germany. Since March 1992 FTIR measurements are performed regularly using the sun as a light source (e.g. Notholt et al., 1993, 1994, 1995, 1997, and 2000). At the latitude of Ny-Ålesund the sun is below the horizon between the middle of October and the middle of March (the same applies to Eureka). In December 1992 the system has been modified to use additionally the moon as light source during the polar night, providing the first such measurements in the field (Notholt et al., 1993, 1994a, and 1995b, Meier 1997, Becker et al., 2000, Notholt and Lehman 2003).

The sample spectra were provided by two former staff: Justus Notholt, who recently took up a professorship with the Institute of Environmental Physics, University of Bremen - FB1, Postfach 330440, D-28334 Bremen, Germany and Arndt Meier, one of the authors. The current scientist in charge at Alfred-Wegener Institute is Astrid Schulz, Alfred-Wegener Institute, Telegrafenberg A43, D-14473 Potsdam, Germany. The total column amounts reported were retrieved by A. Meier. The 1995 solar spectra were recorded with a commercial Bruker 120M spectrometer and have been discussed in much detail as part of an NDSC instrumental inter-comparison (Paton-Walsh et al., 1997). The 1996 solar and lunar spectra were recorded with the new Bruker 120HR spectrometer that was deployed in late 1995. The existing 120M was re-fitted and has since been used as a mobile instrument, notably on the Polarstern cruises (see below).

A.1.3 Kiruna, Arctic Sweden

Measurements in Kiruna have been carried out on a regular basis since Mar 1996 and on a campaign basis since 1989. Early measurements were established by the *Institut für Meteorologie und Klimaforschung* (IMK, Institute of Meteorology and Climate Research), Forschungszentrum Karlsruhe, Germany, with a mobile Bruker IFS 120M instrument. In 1996 a formal collaboration between IMK Karlsruhe, the Swedish Institute of Space Physics (*Institutet för Rymdfysik* IRF), and the Japanese STELAB at University of Nagoya was established. The instrument was replaced with the more sophisticated 120HR model and given a new home at IRF Kiruna and has been in quasi-continuous operation since. Kiruna became the world's 2nd instrument to regularly record lunar spectra. Unlike the high arctic sites it offers 9 full moon phases a year where complete diurnal observations are possible by combining solar and lunar measurements (weather permitting).

The lunar spectra included in this appendix were recorded at a lower spectral resolution (45cm OPD) and integrated over a longer time (1 hour) to achieve an acceptable signal to noise ratio. The lunar absorption spectra were supplemented with two sets of emission spectra pointing the sun-tracker away from the moon at a high and a low zenith angle each and a set of spectra from an external hot blackbody using otherwise the same geometry and instrumental settings to obtain a high quality phase spectrum. The phase spectrum of the blackbody measurements was used to re-transform the interferograms from the emission measurements using the superior phase information from the hot blackbody (see Brault, 1987, for a detailed discussion on the advantages). A weighted combination of the phase corrected low and high zenith angle emission spectra matching the airmass-factor for the time of measurement of the absorption spectra was then calculated and subtracted from the lunar absorption spectrum used for analysis (at higher wavenumbers the emission is negligible). This approach eliminates the need to take emission explicitly into account in the analysis allowing to use the same retrieval algorithms as for solar spectra at the price of adding some additional noise (from the emission spectra)

and under the assumption that temperatures stayed fairly constant throughout the course of the measurements (which was a justified assumption in the given case). For a more in-depth discussion of lunar spectra see Meier, 1997.

The spectra shown were prepared by former IRF staff Arndt Meier. For recent observations and current activities in Kiruna please contact Thomas Blumenstock, IMK (see section Teneriffe).

The Kiruna solar spectra shown are the same as discussed throughout the main section of this book and the same ones as provided in electronic form on the supplemental DVD-ROM disk. All figures in this appendix feature the Kiruna spectra as the reference against which the sample spectra from other sites are being compared. The Kiruna spectra are shifted for clarity by either 0.1 or 0.2 relative intensity units for clarity and shown in a light grey shade. For more details please refer to previous chapters in this work and publications such as Meier et al., 1998, Blumenstock et al., 1997, 1998, and 2000, Höpfner et al., 2001.

A.1.4 Harestua, Norway

The Bruker 120M spectrometer at Harestua, located about 60km north of the Norwegian capital Oslo, is operated by Chalmers University, Gothenburg, Sweden. Operation as part of the NDSC was established in 1996 by the same group, then affiliated with *Institutet för Vatten och Luftvårdsforskning* IVL (Swedish Institute of Water and Clean Air Research), Gothenburg. The sample spectra were provided by Anders Strandberg, Johan Mellqvist and Bo Galle (contact: Anders.Strandberg@rss.chalmers.se). Observations and data analysis methods have been described e.g. in Galle et al., 1999 and 2000, Galle 1999, Mellqvist 1999, Mellqvist et al., 2002, Paton-Walsh et al., 1997.

A.1.5 NPL Teddington, UK (mobile instrument)

The FTIR group at the National Physics Laboratory headed by Peter Woods is well known for their key role in NDSC audited instrumental side-by-side intercomparisons in which their mobile Bruker IFS 120M has been used as a de facto comparison standard (e.g. Paton-Walsh, 1997, Goldman et al., 1999, Griffith et al., 2003, Bell et al, 2001). Although not carrying out continuous measurements at any fixed location, the group has undertaken a number of very interesting campaigns under often challenging conditions. Clare Murphy (formerly C. Paton-Walsh) has selected and made available spectra from 3 such campaigns. One set is discussed here, while the ClO Observations above Aberdeen and the tropospheric HCl pollution event are presented in Appendix B

Aircraft data:

Example solar absorption spectra recorded from a Jetstream aircraft at a cruising altitude of 8km. The 5 sample spectra Jethdo.0; jethcl.0; jethfcut.0; jethno3.0, and jetchno3.0 were taken on 8th March 1995 using a Bruker 120M at 180cm OPD with boxcar apodisation and with a field of view of 6.4 mrads (long wavelengths) and 5 mrads (shorter wavelengths). HF, HCl, and HDO use 7 co-added spectra; HNO3 and ClNO3 use 4 co-added spectra; all taken at a scan speed of 40kHz. The data were all taken at an approximate latitude of 52° N with longitude varying from 0.5° E to 2.5° W. Measurements by Clare Paton-Walsh and William Bell, NPL.

For further information Peter Woods may be contacted at NPL, Queens Rd, Teddington, TW11 0LW, UK, peter.woods@npl.co.uk. Clare Murphy has since moved to Australia and is presently a member of the Wollongong FTIR group, email clarem@uow.edu.au.

A.1.6 Jungfraujoch, Swiss Alps

Since the early 1950s solar infrared spectra have been recorded regularly at the Jungfraujoch station, making it the longest record we have in this field to date. It provided direct evidence for the absence of freons during the early years of measurements at the Jungfraujoch, thus proving their man-made origin (see e.g. Brown et al., 1992). The high altitude makes it an excellent location for stratospheric research given the low amount of water vapour. What is more, interferences from tropospheric gases are reduced, because the lower ground pressure reduces the pressure-broadened line widths as compared to low altitude sites.

The University of Liège group of R. Zander, L. Delbouille, P. Demoulin, E. Mahieu, and co-workers operate 2 FTIR spectrometers at the site, a home-built instrument and (more recently) a customised Bruker IFS 120HR⁶. Both instruments are regularly operated simultaneously (for more than 10 years by now) to guarantee continuity of the measurement series. The list of publications featuring results from this site is long. The inclined reader may start with any of the works by any of the aforementioned group members (see Literature list for details). The sample spectra shown were recorded with the Bruker IFS 120 spectrometer and prepared by Philippe Demoulin, Institut d'Astrophysique et de Géophysique, Allée du VI Août, 17 - Bâtiment B5a, B-4000 Sart Tilman, Liège, Belgium, demoulin@astro.ulg.ac.be.

A.1.7 Toronto, Canada

The group of Kimberly Strong has begun regular observations on the University of Toronto campus only fairly recently (2002). As the data set is not as extensive yet, the zenith angles of the sample spectra sent for HCl and HF are only half that of the Kiruna spectra, resulting in a weaker absorption than one could expect for the same zenith angle at this location. Other members of this research group include Dmitri Yashkov and Aldona Wiacek with the latter kindly compiling the Toronto sample spectra shown here.

The Toronto site is one of few observation sites that is not in a remote location. It is located in the heart of a city with some 5 million inhabitants. It is probably fair to assume that there is a higher chance for local pollutants to show up in these spectra as compared to very remote sites.

For further questions please contact Kimberly Strong, Department of Physics, University of Toronto, 60 St. George Street Toronto, Ontario, M5S 1A7, Canada, strong@atmosp.physics.utoronto.ca or Aldona Wiacek aldona@atmosp.physics.utoronto.ca

A.1.8 Tsukuba, Japan

According to the 2001 NDSC report there are 3 FTIR spectrometers operated at the Tsukuba site: a Bruker IFS 120HR run by H. Nakane and T. Nagahama (NIES, National Institute for Environmental Studies), a Bruker IFS 120M operated by H. Nakane and I. Murata (NIES/Tohoku University), and a Bomem DA-8 operated by Y. Makino and K. Shibata (MRI). The present sample spectra were recorded with the Bruker IFS 120M that has been in operation since 1998. The 120M has been earmarked to be moved to a new observation site near Irkutsk in Siberia with the newer 120HR in Tsukuba taking over as primary instrument for regular observations. The data shown here were kindly provided by Isao Murata, and his student Yahagi, Department of Geophysics, Graduate School of Science, Tohoku University, Aramaki-Aoba, Sendai, 980-8578, Japan, murata@pat.geophys.tohoku.ac.jp. Additional information may be found in Makino et al., 2000, Zhao et al, 2001.

⁶It is actually the first 120HR ever delivered by Bruker. Much knowledge from the Liège and IMK groups has gone into the design of the Bruker IFS 120 instruments.

A.1.9 Kitt Peak, Arizona

The sample spectra from Kitt Peak, Arizona, consist of sets of two spectra recorded about 20 years apart. The Kitt Peak instrument is a purpose-built instrument designed and built in the mid 1970s. The maximum optical path difference is 102*cm*, but many of the early spectra were recorded at a lower spectral resolution. The two to five times lower spectral resolution results in broader and shallower absorption features as compared to spectra from most other instruments including the Kiruna FTS. The sample spectra shown here were provided by Curtis P. Rinsland, and Linda Chiou, NASA Langley, Hampton VA. There are numerous publications describing the site, instrument and study results; e.g. Rinsland et al., 1982 to 2003.

A.1.10 Teneriffe, Canary Islands

Teneriffe hosts a high–altitude observatory equipped with a Bruker IFS 120M spectrometer. It is operational since Feb 1999 and well looked after by the Institute of Meteorology and Climate Research (IMK) of Forschungszentrum Karlsruhe, Germany. The spectra were provided by Thomas Blumenstock, Matthias Schneider, and Frank Hase, all from IMK. For more information on the instrument and the science undertaken please refer to Schneider et al., 2000, or contact thomas.blumenstock@imk.fzk.de.

A.1.11 Research vessel Polarstern, Atlantic shipcruise 1996

In addition to continuous observations on Spitsbergen the German Alfred-Wegener Institute for Polar and Marine Research (AWI) has ventured to study the latitudinal variabilities in atmospheric composition during ship cruises on board the German research vessel Polarstern. The observation platform puts high demands on the suntracker device given the large and often unpredictable movements of the deck floor. This puts some constraints on the spectral resolution reasonably achievable as a function of sea swell. This pioneering work has provided the first solar FTIR spectra from truly tropical regions and has been described in detail in Notholt et al., 1995, 2000a, 2000b, and 2001.

The measurements on board the Polarstern have been performed using a mobile Bruker IFS 120M spectrometer. The instrument is installed in a thermostated container, mounted on the observation deck of the ship, 20 m above see level. Most trace gases commonly detected at higher latitudes could also be observed during the ship cruises. However, for a few compounds the interfering water vapour, caused by the high humidity, prevented their detection (e.g. NO in the tropics).

The sample spectra shown here were recorded at 25.5°W and between 2.8 and 12.8°S at spectral resolutions of 45cm OPD (HNO3, ClNO3), 128cm OPD (HF) and 180cm OPD (HCl) at zenith angles between 59.7 and 65.2°. Spectra courtesy of Justus Notholt, Institute of Environmental Physics, University of Bremen - FB1, Postfach 330440, D-28334, Bremen, Germany.

A.1.12 Maido Summit, Réunion Island

Another fairly recent addition to the NDSC effort is Maido Summit on Ile de la Réunion, a subtropical, volcanic island in the Indian Ocean. Its geographical location, high altitude, and political stability make it a good choice for filling in the large observational gap between Hawaii (19°N) and Wollongong (34°S).

A campaign-style feasibility study at 2 sites, namely Maido Summit (2203m) and the local University campus near sea level, was carried out by a Belgian group headed by Martine De

Mazière in Oct 2002. The clear advantages in observation conditions at Maido Summit appear to justify the higher logistical expenses of operating a (highly automated) spectrometer on a routine basis at the higher altitude and we are looking forward to see more data from Maido Summit.

The sample spectra were recorded with a Bruker IFS 120M, equipped with the 6 standard NDSC bandpass optical filters and nitrogen-cooled InSb and MCT detectors. Data provided by Martine De Maziere and Brice Barret, Belgian Institute for Space Aeronomy, Ringlaan 3, B-1180 Brussels, Martine.DeMaziere@bira-iasb.oma.be. For further details see De Mazière et al., 2003.

A.1.13 Wollongong, Australia

Regular observations at Wollongong on the Australian east coast have been carried out since 1995 (Griffith et al., 1998, Rinsland et al., 2001 and 2002). The team consists of David Griffith, Nicholas Jones (previously at Lauder), Clare Murphy (previously NPL), Arndt Meier (honorary, previously Kiruna), and Cirilo Bernardo (now at CSIRO). The site is equipped with a Bomem DA-8 spectrometer. The data acquisition system was recently replaced with a much more advanced delta-sigma system as theoretically suggested by James Brault (Brault, 1996) making it the first operational IR instrument of its kind (Bernardo, 2002, and unpublished material by DWT Griffith, C Bernardo, and A Meier, 2002).

The site is considered subtropical during a 3-months period in summer and mid-latitudinal throughout the rest of the year. Given its low elevation of 30m and a mere 2km distance from the Pacific ocean, it is probably the "wettest" site within the network (apart from ship cruises). The total column amount of water vapour on a humid day can be more than one hundred times higher than on a typical day at the Jungfraujoch.

Nevertheless, most molecules are well observable throughout the year, including NO near $1900cm^{-1}$. Splitting the 650 to $1350cm^{-1}$ regions into two optical filters in 1999 has markedly improved signal-to-noise ratios in low wavenumber regions hence boosting the quality of ClNO3 and HNO3 observations significantly (Rinsland et al., 2003). The sample spectra shown were prepared and analysed by Arndt Meier.

A.1.14 Lauder, New Zealand

A commercial Bruker IFS 120HR spectrometer has replaced the smaller IFS 120Ms at Lauder, New Zealand, in recent years. However, all but the HDO spectrum from December 2001 were taken with the older 120M instruments. The spectra shown have been prepared by Stephen Wood from NIWA, Lauder, New Zealand and former NIWA staff Nicholas B. Jones, now of Wollongong University, Australia. For more details, see Jones at al., 1994 and 2001, Connor et al., 1996 and 1997, Rinsland et al., 1994, 2001, 2002, and 2003, Bell et al., 2001, Griffith et al., 2003, or contact Stephen W. Wood, s.wood@niwa.co.nz, National Institute of Water and Atmospheric Research Ltd, Lauder, priv. bag 50061, Omakau, Central Otago, New Zealand.

A.1.15 Arrival Heights, Antarctica

The Arrival Heights site near McMurdo station is operated by the Lauder group in New Zealand with much commitment from Stephen Wood. The spectra were recorded with a commercial Bruker IFS 120M spectrometer. For further reading see also Connor et al., 1987, Jaramillo, 1988; Kreher 1996 and 1997, in addition to the Lauder references. Spectra for Arrival Heights have been provided by Stephen Wood from NIWA, Lauder, New Zealand (see contact details above).

A.2 Comparison of Chloronitrate

Table A1.2 lists the sites that provided sample spectra for the $780.2cm^{-1}$ microwindow for the retrieval of $ClONO_2$. Instrumental settings and the TCAs retrieved (where provided) are listed as well. The sample spectra from all sites listed are illustrated over the next few pages. Each in turn is compared to the Kiruna spectra used throughout the main section of this work. Kiruna spectra are in red or dashed and participating sites in blue or solid colour depending on whether you have the colour or monochrome edition.

Table A1.2: ClONO₂. Details of the observation geometries and retrieved total column amounts for sample spectra featuring the Chloronitrate window near 780.2cm⁻¹. Site locations and elevations are listed in the previous table. Zenith angles are solar or lunar astronomical zenith angles in degrees. Max. OPD is the maximum optical path difference or the reciprocal of the spectral resolution at which the spectra were recorded. FoV is the field of view defined as the diameter of the aperture stop divided by the focal length of the instrument. Duration is the total scanning time. Apodisation is the apodisation function applied in the Fourier Transform and sample name is the file name by which the individual investigators identify the sample data they sent. The total column amount (TCA) retrieved for the target molecule is listed where available, else the entry is marked 'not provided' (n.p.).

Observation	date of	zenith	OPD	FoV	apodi-	Dura-	TCA	sample
site	recording	angle	[cm]	[mrad]	sation	tion [s]	$molec/cm^2$	name
Eureka	$24/\mathrm{Apr}/99$	68.89	250	3.00	boxcar	1010	3.49e15	24a9904b.spc
Ny-Ålesund	28/May/95	63.24	180	3.86	boxcar	n.p.	1.76e15	95052876.s09
Ny-Ålesund	$04/\mathrm{Apr}/96$	73.06	180	3.86	boxcar	736	3.47e15	96040404.s00
Ny-Ålesund lun	02/Feb/96	69.05	45	6.36	boxcar	3760	n.p.	96020218.s00
Kiruna, solar	15/Mar/97	71.68	257	4.07	boxcar	823	4.10e15	970315 s6. s92
Kiruna, lunar	04/Dec/98	70.55	45	5.98	boxcar	4401	1.67 e15	970323m6.s90
Harestua	20/Mar/01	70.44	180	3.86	boxcar	142	1.94e15	gb010320.25
Jet, 52° N, 1° W	08/Mar/96	68.55	180	6.36	boxcar	195	n.p.	b1920908.bnr
Jungfraujoch	15/Jan/01	69.62	125	4.78	boxcar	1715	$\leq 1.5 e15^{*)}$	r01115qk.moy
Toronto	20/Feb/03	56.62	250	2.46	boxcar	1010	n.p.	$30220600.\mathrm{spc}$
Tsukuba	17/Feb/00	71.23	257	3.86	boxcar	308	n.p.	t048k6m0.770
Kitt Peak	$26/\mathrm{Apr}/81$	84.53	102	n.p.	kpno10	n.p.	0.59e15	260d0775.bin
Kitt Peak	01/Aug/01	70.55	94	n.p.	kpno5	n.p.	n.p.	010j0775.bin
Teneriffe	27/May/02	64.0	250	2.50	boxcar	n.p.	0.38e15	clno3-020527
Polarstern, $4^{o}S$	25/Oct/96	59.78	45	2.27	boxcar	n.p.	n.p.	96102539.08
Maido Summit	$05/\mathrm{Oct}/\mathrm{02}$	68.78	82	6.36	boxcar	102	n.p.	02a05001.sml
Wollongong	14/Jun/01	72.53	250	3.08	boxcar	565	0.92 e15	010614f8.504
Lauder	11/Jul/01	69.55	257	3.86	boxcar	408	n.p.	b1920908.bnr
Arrival Heights	20/Dec/01	71.32	257	2.95	boxcar	256	n.p.	b3541807.mnr

Apodisation function kpno10 (kpno5) applies a squared cosine to the last 10% (5%) of the interferogram.

^{*)} ClONO₂ is near the detection limit.

Note that the solar OH line near $780.875 cm^{-1}$ is absent in the lunar spectra.

523

A.3 Comparison of Nitric Acid

Table A1.3 lists the sites that provided sample spectra for the $865-875cm^{-1}$ microwindows for the retrieval of HNO_3 . Instrumental settings and the TCA retrieved (where provided) are listed as well. The sample spectra from all sites listed are illustrated over the next few pages.

Table A1.3: HNO₃ Details of the observation geometries for the sample spectra featuring the nitric acid windows in the 865 to 875 cm⁻¹ spectral interval. See Table A1.2 (page 518) for a description of the table items.

Observation	date of	zenith	OPD	FoV	apodi-	Dura-	TCA	sample
site	recording	angle	[cm]	[mrad]	sation	tion[s]	$molec/cm^2$	name
Eureka solar	$24/\mathrm{Apr}/99$	68.89	250	3.00	boxcar	1010	2.22e16	24a9904b.spc
Eureka lunar	02/Mar/01	69.00	50	6.18	hamming	8096	2.38e16	l02m011c.spc
Ny-Ålesund	28/May/95	63.24	180	3.86	boxcar	n.p.	1.64e16	95052876.s09
Ny-Ålesund	$04/\mathrm{Apr}/96$	73.06	180	3.86	boxcar	736	2.27 e16	96040404.s00
Ny-Ålesund lun	02/Feb/96	69.05	45	6.36	boxcar	3760	n.p.	96020218.s00
Kiruna, solar	15/Mar/97	71.68	257	4.07	boxcar	823	2.67 e16	970315s6.s92
Kiruna, lunar	04/Dec/98	70.55	45	5.98	boxcar	4401	2.51e16	970323m6.s90
Harestua	20/Mar/01	70.44	180	3.86	boxcar	142	2.72e16	ga010320.25
Jet, 52° N, 1° W	08/Mar/96	68.55	180	6.36	boxcar	195	n.p.	b1920908.bnr
Jungfraujoch	14/Aug/01	70.39	125	4.78	boxcar	539	1.16e16	r01814lj.moy
Toronto	20/Feb/03	56.62	250	2.46	boxcar	1010	n.p.	$30220600.\mathrm{spc}$
Tsukuba	17/Feb/00	71.23	257	3.86	boxcar	308	1.57 e16	t048k6m0.860
Kitt Peak	$26/\mathrm{Apr}/81$	71.94	102	n.p.	kpno10	n.p.	1.10e16	260c0850.bin
Kitt Peak	01/Aug/01	70.55	94	n.p.	kpno5	n.p.	n.p.	010j0850.bin
Teneriffe	27/May/02	64.0	250	2.50	boxcar	n.p.	0.74e16	hno3-020527
Polarstern, $4^{\circ}S$	25/Oct/96	59.78	45	2.27	boxcar	n.p.	n.p.	96102539.08
Maido Summit	05/Oct/02	68.78	82	6.36	boxcar	102	n.p.	02a05001.sml
Maido Summit	24/Oct/02	70.96	82	6.36	boxcar	102	n.p.	02a24001.sml
Wollongong	18/Oct/01	71.50	250	3.08	boxcar	565	1.25e16	011018f8.s06
Lauder	11/Jul/01	69.55	257	3.86	boxcar	408	n.p.	b1920908.bnr
Arrival Heights	20/Dec/01	71.32	257	2.95	boxcar	256	n.p.	b3541808.mnr

Fig.A.35: Eureka, lunar ZA 69.0°, 2/Mar/01

Fig.A.37: Ny-Ålesund, SZA 59/73°, 5/95 & 4/96

Fig.A.34: Eureka, SZA 68.89°, 24/Apr/99

Fig.A.36: Eureka, lunar ZA 69.0°, 2/Mar/01

Fig.A.38: Ny-Ålesund, SZA 59/73°, 5/95 & 4/96

0.6

0.4

0.2

0.0

866.0

Kiruna

868.0

870.0

Harestua

872.85 872.90 872.95 873.00

(solar)

(lunar)

 solar

lunar

872.80

874.0

 H_2O

872.0

872.80 872.85 872.90 872.95 873.00

872.80 872.85 872.90 872.95 873.00

A.4 Comparison of Water Vapour

Table A1.4 lists the sites that provided sample spectra for the $2612cm^{-1}$ microwindow for the retrieval of *HDO*. Participants were asked to provide one example each for a dry and a humid day. Instrumental settings and the TCA retrieved (where provided) are listed as well. The TCA shown is the equivalent total water abundance under the assumption of the isotopic ratio of the HITRAN database – multiply the numbers with 3.10693e-04 if you are interested in HDO only (compare Table 2.3, page 19). The sample spectra from all sites listed are illustrated over the next few pages.

Table A1.4: HDO Details of the observation geometries for the sample spectra featuring the heavy water vapour window near $2612.5cm^{-1}$. See Table A1.2 (page 518) for a description of the table items.

Observation	date of	zenith	OPD	FoV	apodi-	Dura-	TCA	sample
site	recording	angle	[cm]	[mrad]	sation	tion/s	$ m molec/cm^2$	name
Eureka 'dry'	$24/\mathrm{Apr}/99$	73.68	250	1.69	hamming	1010	4.79e21	24a99011.spc
Eureka 'humid'	29/Aug/95	72.12	250	1.69	hamming	1010	11.00e21	29a95011.spc
Ny-Ålesund	$03/\mathrm{Apr}/96$	74.13	180	1.36	boxcar	595	5.08e21	96040301.s00
Ny-Ålesund	28/May/95	59.32	180	2.27	boxcar	n.p.	10.55e21	95052808.s09
Kiruna, solar	15/Mar/97	71.02	257	2.39	boxcar	615	4.24e21	970315 s4. s90
Harestua 'dry'	20/Mar/01	68.87	257	2.95	boxcar	203	n.p.	cc010320.01
Harestua 'humid'	20/Mar/01	68.00	257	2.95	boxcar	203	n.p.	cc010821.dpt
Jet, 52° N, 1° W	08/Mar/96	68.53	180	2.95	boxcar	186	n.p.	b1920908.bnr
Jungfraujoch 'dry'	08/Jun/98	72.53	101	2.63	boxcar	360	0.70e21	r98608km.moy
Jungfraujoch 'wet'	10/Jun/98	68.91	101	2.63	boxcar	200	1.30e21	r98610 bf.moy
Toronto 'dry'	20/Jan/03	64.61	250	1.54	boxcar	1010	n.p.	$30120300.\mathrm{spc}$
Toronto 'less dry'	$09/\mathrm{Apr}/03$	38.77	250	1.54	boxcar	1010	n.p.	$30409300.{ m spc}$
Tsukuba 'dry'	17/Feb/99	70.57	257	2.27	boxcar	308	n.p.	t048j3m1.260
Tsukuba 'humid'	18/May/01	69.34	257	2.27	boxcar	308	n.p.	t138l3m0.260
Teneriffe 'dry'	27/May/02	59.0	250	1.14	boxcar	n.p.	4.83e21	hdo-020527
Teneriffe 'humid'	18/Jun/02	71.0	250	1.14	boxcar	n.p.	21.47e21	hdo-020618
Maido Summit	$19/\mathrm{Oct}/\mathrm{02}$	70.10	101	3.86	boxcar	123	n.p.	02a19001.shl
Wollongong 'dry'	$09/\mathrm{Jul}/98$	72.05	250	2.46	boxcar	563	11.78e21	980709f4.501
Wollong. 'humid'	12/Jan/98	66.55	250	2.46	boxcar	563	102.90e21	980112f4.503
Lauder 'dry'	$12/\mathrm{Sep}/01$	69.49	257	2.27	boxcar	408	n.p.	b2551326.bnr
Lauder 'humid'	21/Dec/01	68.75	257	2.75	boxcar	408	n.p.	b3552326.bnr
Arrival Hghts 'dry'	18/Oct/01	69.92	257	2.27	boxcar	102	n.p.	b2910326.mnr
Arrival Hghts 'wet'	25/Feb/01	68.87	257	2.27	boxcar	102	n.p.	b0560326.mnr

HDO

Fig.A.68: Ny-Ålesund, Lunar ZA 74°, 2/96

Fig.A.71: Jetstream camp., SZA 57°, 8/Mar/96

HDO Kiruna 8/Jun/98 ^V10/Jun/98 2613.5 2612.5 2613.0

Kiruna

20/3/01

13/3/03

2613.0

2613.5

HDO

A.5 Comparison of Hydrogen Chloride

Table A1.5 lists the sites that provided sample spectra for the $2925.95cm^{-1}$ microwindow for the retrieval of *HCl*. Instrumental settings and the TCA retrieved (where provided) are listed as well. The sample spectra from all sites listed are illustrated over the next few pages.

Table A1.5: HCl Details of the observation geometries for the sample spectra featuring the hydrogen chloride window near $2925.9cm^{-1}$. See Table A1.2 (page 518) for a description of the table items.

Observation	date of	zenith	OPD	FoV	apodi-	Dura-	TCA	sample
site	recording	angle	[cm]	[mrad]	sation	tion $[s]$	$ m molec/cm^2$	name
Eureka	$24/\mathrm{Apr}/99$	70.32	250	1.69	boxcar	1010	5.22e15	24a99006.spc
Ny-Ålesund	28/May/95	59.32	180	2.27	boxcar	n.p.	5.27 e15	95052808.s09
Ny-Ålesund	$03/\mathrm{Apr}/96$	74.13	180	1.36	boxcar	595	5.33e15	96040301.s00
Ny-Ålesund lun	02/Feb/96	73.97	45	6.36	boxcar	3760	n.p.	96020217.s00
Kiruna, solar	15/Mar/97	69.87	257	1.91	boxcar	615	3.12e15	970315 s 3. s 90
Kiruna, lunar	04/Dec/98	68.81	45	5.98	boxcar	4401	3.74e15	970323m1.s40
Harestua	20/Mar/01	68.87	257	2.95	boxcar	203	6.37 e15	cc010320.01
Jet, 52° N, 1° W	08/Mar/96	68.53	180	2.95	boxcar	186	n.p.	b1920908.bnr
Jungfraujoch	10/Dec/01	69.55	175	2.63	boxcar	1035	3.80 e15	r01c10uw.moy
Toronto	$15/\mathrm{Aug}/02$	36.78	250	1.54	boxcar	1010	n.p.	$20815300.\mathrm{spc}$
Tsukuba	17/Feb/99	70.57	257	2.27	boxcar	308	10.33 e15	t048j3m1.292
Tsukuba	18/May/01	69.34	257	2.27	boxcar	308	15.86e15	t138l3m0.292
Kitt Peak	14/May/78	69.75	48	n.p.	kpno10	n.p.	1.89e15	140a2925.bin
Kitt Peak	04/Jan/00	70.82	83	n.p.	kpno5	n.p.	n.p.	040m2925.bin
Teneriffe	27/May/02	59.0	250	1.14	boxcar	n.p.	2.41e15	hcl-020527
Polarstern, $2.8^{\circ}S$	25/Oct/96	62.30	180	2.95	boxcar	n.p.	n.p.	96102512.09
Maido Summit	19/Oct/02	70.10	101	3.86	boxcar	123	n.p.	02a19001.shl
Wollongong	$14/{\rm Sep}/99$	69.05	250	2.46	boxcar	563	3.80 e15	990914f3.506
Lauder	$12/\mathrm{Sep}/01$	69.49	257	2.27	boxcar	408	n.p.	b2551329.bnr
Arrival Heights	18/Oct/01	69.92	257	2.95	boxcar	102	n.p.	b2910329.mnr
Arrival Heights	$06/\mathrm{Sep}/01$	84.53	257	2.95	boxcar	102	n.p.	b2490329.mnr

Fig.A.79: Eureka, SZA 70.32°, 24/Apr/99

Fig.A.80: Eureka, SZA 70.32°, 24/Apr/99

Fig.A.81: Ny-Ålesund, SZA 64/74°, 5/95 & 4/96 F

Fig.A.82: Ny-Ålesund, SZA 64/74°, 5/95 & 4/96

Fig.A.83: Ny-Ålesund, Lunar ZA 74° , 2/2/96

Fig.A.85: Kiruna, Lunar ZA 68.8°, Mar/96

Fig.A.84: Ny-Ålesund, Lunar ZA 74°, 2/2/96

Fig.A.86: Kiruna, Lunar ZA 68.8°, Mar/96

Fig.A.89: Jetstream camp., SZA 56.8°, Mar/96

Fig.A.91: Jungfraujoch, SZA 70°, 10/Dec/01

Fig.A.90: Jetstream, SZA 56.8°, 8/Mar/96

Fig.A.92: Jungfraujoch, SZA 70°, 10/Dec/01

Fig.A.94: Toronto, SZA 38.8°, 03/Apr/03

Fig.A.95: Tsukuba, SZA 70°, Feb/99 & May/01

Fig.A.97: Kitt Peak, SZA 70°, 5/1978 & 1/2000

Fig.A.96: Tsukuba, SZA 70°, Feb/99 & May/01

Fig.A.98: Kitt Peak, SZA 70°, 5/78 & 1/2000

HCl

539

A.6 Comparison of Hydrogen Fluoride

Table A1.6 lists the sites that provided sample spectra for the $4038.9cm^{-1}$ microwindow for the retrieval of HF. Instrumental settings and the TCAs retrieved (where provided) are listed as well. The sample spectra from all sites listed are illustrated over the next few pages.

Table A1.6: HF Details of the observation geometries for the sample spectra featuring the hydrogen fluoride window near $4038.9cm^{-1}$. See Table A1.2 (page 518) for a description of the table items.

Observation	date of	zenith	OPD	FoV	apodi-	Dura-	TCA	sample
site	recording	angle	[cm]	[mrad]	sation	tion [s]	$molec/cm^2$	name
Eureka	$24/\mathrm{Apr}/99$	70.96	250	1.69	boxcar	1010	1.96e15	24a99007.spc
Ny-Ålesund	28/May/95	57.88	128	2.27	boxcar	n.p.	1.45e15	95052846.s09
Ny-Ålesund	$03/\mathrm{Apr}/96$	73.97	128	2.27	boxcar	595	2.84e15	96040302.s00
Ny-Ålesund lun	$02/{\rm Feb}/96$	73.97	45	6.36	boxcar	3760	n.p.	96020217.s00
Kiruna, solar	15/Mar/97	69.97	257	1.91	boxcar	615	2.28e15	970315 s1.s90
Kiruna, lunar	04/Dec/98	68.81	45	5.98	boxcar	4401	2.28e15	970323m1.s40
Harestua	20/Mar/01	68.10	180	2.95	boxcar	284	2.19e15	aa010320.23
Jet, 52° N, 1° W	08/Mar/96	68.54	128	2.95	boxcar	192	n.p.	b1920908.bnr
Jungfraujoch	14/Jan/01	70.38	114	2.63	boxcar	270	1.81e15	r01114on.moy
Toronto	24/Apr/03	35.80	250	1.54	boxcar	1010	n.p.	$30424100.{ m spc}$
Tsukuba	17/Feb/99	72.30	257	2.27	boxcar	308	1.02e15	t048j1m1.403
Tsukuba	18/May/01	70.99	257	2.27	boxcar	308	1.41e15	t138l1m1.403
Kitt Peak	02/Dec/79	78.74	35	n.p.	kpno10	n.p.	0.34e15	020b4025.bin
Kitt Peak	17/Jan/94	69.44	47	n.p.	kpno5	n.p.	n.p.	170j4025.bin
Teneriffe	27/May/02	52.0	180	1.14	boxcar	n.p.	0.87 e15	hf020527.dpt
Polarstern, $13^{o}S$	27/Oct/96	65.20	128	2.27	boxcar	n.p.	n.p.	96102722.09
Maido Summit	$25/\mathrm{Oct}/\mathrm{02}$	67.95	125	2.95	boxcar	303	n.p.	02a25007.shf
Wollongong	$16/\mathrm{Jul}/97$	69.82	250	1.85	boxcar	563	1.01e15	970716f1.502
Lauder	25/May/01	70.85	257	2.27	boxcar	409	n.p.	b1453240.bnr
Arrival Heights	20/Dec/01	71.13	257	2.27	boxcar	102	n.p.	b3541240.mnr

 \mathbf{HF}

Fig.A.112: Eureka, SZA 70.96°, 24/Apr/99

Fig.A.114: Ny-Ålesund, SZA 58/74°, 5/95 & 4/96

Fig.A.115: Ny-Ålesund, Lunar ZA 74^o, 2/2/96

Fig.A.117: Kiruna, Lunar ZA 69°, 23/3/96

Fig.A.116: Ny-Ålesund, Lunar ZA 74^o, 2/2/96

Fig.A.118: Kiruna, Lunar ZA 69°, 23/3/96

1.2HF1.0H2O 1.00.8 0.8HDO 0.6 HF 0.60.4Kiruna Kiruna 0.20.4Harestua Harestua 0.0 4038.64038.84039.04039.24039.4 4038.904038.94 4038.984039.02 Fig.A.121: Jetstream camp., SZA 57°, 8/Mar/96 Fig.A.122: Jetstream, SZA 57°, 8/Mar/96 1.2 HF 1.01.0H2O0.80.8HDO 0.6HF 0.6 0.4Jet (NPL) Kiruna 0.20.4aircraft at 8km alt. (NPL) **K**iruna 0.0 4038.64038.84039.04039.24039.44038.904038.944038.984039.02Fig.A.123: Jungfraujoch, SZA 70.4°, 14/1/01 Fig.A.124: Jungfraujoch, SZA 70.4°, 14/1/01 1.2HF1.0H2O 1.00.80.8HDO 0.6HF0.60.4Kiruna Kiruna 0.20.4ISSJ ISSJ, 14/Jan/2001 0.0

4039.2

4038.6

4038.8

4039.0

4039.4

542

4038.90

4038.94

4038.98

4039.02

Fig.A.120: Harestua, SZA 68.1°, 20/Mar/01

Fig.A.119: Harestua, SZA 68.1°, 20/Mar/01

543

 \mathbf{HF}

B Other spectra of special interest

Some of the spectra of special interest have already been included in the previous section. These include airborne observations from a cruising altitude of 8km (very low water vapour and narrow lines), spectra from the equatorial Atlantic (Polarstern ship-cruise), Kitt Peak spectra recorded some 20 years apart (note the significant increase in inorganic chlorine seen in Figures A.97 and A.98 over the time period), and lunar spectra from 3 Arctic locations (Ny-Ålesund, Kiruna, and Eureka).

This section gives additional examples of noteworthy spectra recorded under special conditions. This includes a closer look at lunar spectra, an event of tropospheric HCl pollution, an event of chlorine activation, the presence of polar stratospheric ice clouds, and spectra recorded during intense bushfires in Australia.

B.1 Tropospheric HCl pollution:

Fig. B.1: A local, tropospheric HCl pollution event recorded by the NPL team during an instrumental intercomparison in 1994.

Example of significant tropospheric HCl pollution measured in Oxfordshire, UK, 1994. The three spectra labelled "Normal", "polluted", and "highly polluted" show a co-add of 12 spectra from later the same day showing the HCl region as usual, a co-add of 4 spectra which all showed significant HCl pollution in the troposphere, and a single scan with very large HCl tropospheric pollution; respectively. The spectra were taken during an FTIR instrument intercomparison at Rutherford Appleton Laboratories 51.57° N, 1.31° W, 130m altitude on the 13^{th} August, 1994, using 180cm OPD, boxcar apodisation and 5mrad field of view on a Bruker 120M spectrometer run at scan speed 8 (40kHz). Measurements by Clare Paton-Walsh and William Bell, NPL.

B.2 ClO Observations above Aberdeen

Elevated levels of ClO measured from Aberdeen during the SESAME campaign. The 3 figures shown contain the regions of the p8.5, p10.5 and p11.5 lines. The regions are cut from coadded spectra (4 x 6 co-adds) taken between 13.10 and 13.25 UT on 20^{th} January 1995 from Aberdeen, UK (57°N, 2°W, 150m altitude) representing a solar zenith angle of 78.26°. The ClO features are small but clearly identifyable at 833.3; 830.6 and 829.25cm⁻¹, respectively (indicated by arrows). The maximum optical path difference was 180 cm with a field of view of 6.4 mrad using boxcar apodisation on a Bruker IFS 120M spectrometer run at a scan speed of 40kHz. Measurements by W. Bell, C. Paton-Walsh, and T.D. Gardiner, NPL.

Fig. B.2: The three panels show the p8.5, p10.5 and p11.5 lines of ClO (indicated by arrows) as observed during the SESAME campaign and for comparison the Kiruna spectra in which the *ClO* features are below detection limit.

Analysis of 13 independent absorption features in the P and R branches of the (0-1) vibration-rotation band of 35 ClO in the $817-855cm^{-1}$ spectral region yielded a total column amount of 3.42 ± 0.47 E15 molec/cm². These high values indicate that significant chlorine activation had occurred and that the airmasses sampled were of polar origin. A 3D chemical transport model employed in the studies suggested that most of the ClO was located between 16 and 22km altitude, which translates to a concentration of 2.6ppm to be consistent with the total column amount observed. Details of the measurements and their interpretation are found in (Bell, et al., 1996).

B.3 Lunar spectra

The following 5 figures illustrate lunar spectra recorded at the Kiruna site. Special attention is drawn to 2 important properties: The absence of undesired solar interferences and the important role of emission in lunar absorption spectra.

The moon is significantly cooler than the sun, reaching a typical temperature of 370K during full moon as opposed to an approximate 5600K for the source of solar spectra. A quick look at the Stefan–Boltzmann law that relates the radiation emitted by a blackbody to the 4^{th} power of its temperature translates into a difference in the radiation flux of 2 to 3 orders of magnitude in the spectral region of interest (Figure B.3, quoted from Meier, 1997). Consequently one may expect much a poorer singal–to–noise ratio for lunar spectra as compared to solar spectra under otherwise identical observation conditions. The anticipated lower flux can be compensated for to some extend through the use of a strong telescope in the suntracker optics, a larger aperture stop, more sensitive detectors, lower spectral resolution, and longer integration times. Except for an enhanced telescope all other measures were taken in the lunar spectra presented here (compare Table A1.2). The lunar spectra were recorded at an OPD of 45cm, a field of view of 6.36mrad, co-added over one hour, using dedicated high-sensitivity lunar MCT and InSb detectors.

Wavenumber ν in cm^{-1}

Fig. B.3: Comparison of the solar and lunar spectral flux density Φ incident on the terrestrial surface neglecting atmospheric interaction. In a simple approximation the sun and moon are treated as blackbodies of the temperatures given in the key. The maximum in radiation is found according to Wien's law near 12100 cm^{-1} (500 nm) for the solar spectrum and at 770 cm^{-1} (7.8 μm) for the full moon. The vertical lines indicate the mid-infrared region from 700 to 4050 cm^{-1} . (Figure quoted from Meier, 1997.)

Emission from the dark night sky and the instrument complicate the situation significantly and must be taken into account explicitly in the data analysis, because the typical temperature of the dark night sky (ca. 250K) and of the instrument itself (274K) is not dramatically

Fig. B.4: Illustration of the observed lunar spectrum (top) and its decomposition into emission contribution (center) and pure absorption spectrum (bottom).

lower than the temperature of the full moon (370K). Schreiber (1994) gives a very hands-on description of the pitfalls of self-emission in an FTS. In short, it is very advisable that the lunar detector does not see any parts of the spectrometer that are at room temperature – this is achieved by placing the aperture stop and the optical filter inside the detector dewar keeping them at the temperature of liquid nitrogen and avoidance of any external filters or lenses.

There is nothing we can do about the temperature of the sky though. However, this is only of importance below roughly $2000cm^{-1}$ as the emissivity of a blackbody at 250K drops sharply above $1500cm^{-1}$. The fact that we can still obtain an appreciable signal from the moon at higher wavenumbers is largely due to the fact that direct reflection takes over as the dominant source of light as opposed to blackbody radiation from the lunar surface dominating at lower wavenumbers (Notholt et al., 1994, 1995).

Figure B.4 illustrates a) the raw lunar MCT spectrum as recorded from the ground at Kiruna at a lunar zenith angle of 70.5° on the evening of 4/Dec/1998. This is compared to b) a dark sky emission spectrum representative for the same zenith angle recorded the same night and c) the difference spectrum of a) - b). The emission spectrum was obtained by pointing the suntracker away from the moon (azimuth angle differs by greater than 30°) and taking one emission spectrum each at a zenith angle of 40 and 80° with otherwise identical instrumental settings. For each absorption spectrum recorded that night a matching emission spectrum was constructed by taking a weighted mean over the two emission spectra such that the required total air mass factor from the absorption spectrum was matched exactly. All interferograms were transformed using the phase information from a calibration spectrum recorded with the help of an external blackbody of 1000°C – for a discussion of the advantages of using a stored phase for emission spectra see Brault (1987).

The resulting spectrum c) gives the lunar absorption spectrum after correcting for all emission contributions. This corrected lunar spectrum can be analysed just like any solar absorption spectrum except that solar absorption lines need not be taken into account. While lunar spectra require more diligence and result typically in lower spectral and temporal resolution, they add greatly to our observation capabilities during polar night and in the study of diurnal patterns. Given the nature of emission from the dark sky, this technique works best in cold nights. Note also that lunar observations are more susceptible to the distorting effects of clouds than solar spectra are; in particular if the clouds are "warm" tropospheric clouds,

Figure B.5 gives a close-up view of the emission spectrum and highlights the effects of a poor phase information. The emission spectrum (bottom, green) has been mirrored and stretched to superpose with the absorption spectrum. Absorbers in the relatively warm troposphere result in broad features in both the absorption and the emission spectrum, while the sharp features of ozone are practically absent from the emission spectrum. The stratosphere is much colder, thus very little emission from ozone is observed. Re-transforming the original emission interferogram with a stored phase results in a much better phase corrected spectrum (red) than compared to using the phase information from the low-intensity emission spectrum itself (blue) (see Brault, 1987, for an explanation). The stored phase was obtained with a blackbody spectrum taken immediately after the emission spectrum with identical instrumental settings except for a flat mirror in the parallel beam to switch from the suntracker to the blackbody source.

The next figure, B.6, compares the corrected and normalised lunar MCT spectrum (top) and the raw lunar InSb spectrum (bottom) to comparable spectra recorded with the sun. Note that the InSb solar spectra (lower panel), in contrast to the lunar spectra, are composite spectra, consisting of 4 solar spectra recorded with different optical filters that were normalised

Wavenumber ν in cm^{-1}

Fig. B.5: A more detailed comparison of the lunar absorption and the night sky emission spectrum is shown. The lowest curve (green or solid⁷ line) gives the phase corrected night sky spectrum, with the blackbody portion indicated by the black or dashed line. Both the phase corrected (top red or solid line) and the not phase corrected emission spectrum (blue or broken line in the centre) have been projected onto the absorption spectrum (black or dotted line) by mirroring and stretching to illustrate the line shape distortion caused by the large phase errors common in emission spectra. Differences in the general lineshape between absorption and emission spectra are mostly due to differences in the location of signal formation. Most of the emission arises from the warmer lower troposphere. Thus, stratospheric gases like ozone are mostly absent in the emission spectra. (Figure quoted from Meier, 1997.)

individually before merging them. The solar spectra are the Kiruna solar spectra used as a reference throughout the microwindow atlas; i.e. they were recorded on 15/Mar/1997 (600 to $4370cm^{-1}$) and and 1/Apr/1998 (3950 to $7140cm^{-1}$).

Emission- and detector-response corrected Lunar MCT spectrum

Fig. B.6: The corrected lunar absorption spectrum for the MCT detector (top) and for the InSb detector (bottom) are compared to solar spectra recorded at a similar zenith angle.

B.4 Polar stratospheric ice clouds

On 26th Jan, 2000, around local noon and shortly after the end of polar night, solar absorption spectra were recorded from Kiruna in the presence of stratospheric ice clouds. These measurements coincided closely in time and space with lidar measurements from an aircraft. The measurements shown in Figure B.7 were kindly provided by Michael Höpfner, Thomas Blumenstock, and Frank Hase from FZ Karlsruhe.

Fig. B.7: Solar absorption spectrum recorded through a thin polar stratospheric ice cloud at Kiruna on the 26^{th} Jan, 2000 and comparison with a clear-sky spectrum recorded 4 days earlier.

The measurements discussed represent the first report of ground-based solar FTIR techniques as a means of retrieving micro-physical parameters of ice clouds. The spectra were calibrated to absolute radiance with an external blackbody operated at 1273K. The solar zenith angle was very high (88.3°). However, zenith angle smearing can be neglected, because of the very slow change of the solar zenith angle at this latitude and season. Retrieval of the mean particle properties from the low resolution FTIR spectrum ($0.14cm^{-1}$) depends on the assumed width of the particle size distribution and range from 1.1 to $2.0\mu m$ radius and from 1.9 to $5.1cm^{-3}$ number density. The volume density determined is 60.2 to $63.8\mu m$ equivalent to 2.5ppmv of condensed water at 20hPa. Simulations of lidar backscatter ratios based on the FTIR results are consistent with the lidar observations. For a full discussion of these spectra see Höpfner et al., 2001.

B.5 Intense bushfires in Australia

Wollongong is located on the Australian east coast, about 70km south of Sydney. It is surrounded by large areas of rainforests, except to the east where we find the Pacific ocean. Between 24/Dec/2001 and 5/Jan/2002 intense bushfires in the region destroyed about 500 000ha of forrest around the Wollongong observation site, some coming within a few kilometers. The FTS was operated daily, cloud cover permitting, resulting in more than 1000 solar spectra recorded during these 2 weeks. Visibility at the site dropped below 100m on the ground on several days due to the high levels of smoke.

On the 1^{st} Jan, 2002, a particularly thick smoke plume was passing over the University campus. The plume was well developed and fairly stable between 10:30h and 13:30h local standard time, while the path of the solar beam cut a transect across the plume. Considerable amounts of charcoaled Eucalyptus leaves and ashes rained onto the roof, caused by a nearby fire, between 5 and 10 km to the southwest and west of the University Campus up on the escarpment and the far side of a small hill (Mt Keira). The signal on the suntracker quadrant diodes (which use visible light) had dropped to 1 to 2% of their clear-day values. However, the operation of the suntracker was not hampered as it switches automatically to calculating the solar position if the quadrant diode signals become too weak for active tracking.

Under these rather extreme conditions we recorded the highest levels of bushfire emitted combustion products recorded by high-resolution solar FTIR methods to date. Figures B.8 to B.14 illustrate some of the striking observations made. Shown in each figure are a spectrum recorded on the 01/Jan/2002 near midday and for comparison the same observation made 3 or 9 days later.

Fig. B.8: This figure illustrates the highest ethylene (C_2H_4) observation made from Wollongong between May 1995 and Feb 2002. The spectrum recorded on 01/Jan/2002 under a SZA of 38^o is compared to a similar spectrum recorded 9 days later with C_2H_4 dropped back to normal levels.

The total column amounts as well as the retrieved volume mixing ratios near ground are listed in Table B.1 and are compared to their corresponding 6-year mean values. Ethylene (C_2H_4) is a very short-lived combustion product that is usually near or below the detection limit at the Wollongong site. However, clear absorption features are visible in most of our

Fig. B.9: This figure illustrates the highest ammonia total column amount recorded above Wollongong between May 1995 and Feb 2002. The spectrum recorded on 01/Jan/2002 under a SZA of 38° is compared to a similar spectrum recorded 9 days later with NH_3 showing normal levels.

HNO₃ & NH₃ observed in bushfire plumes above Wollongong

Fig. B.10: This figure illustrates the impact that high ammonia levels may have on the retrieval of nitric acid. This is admittedly an extreme case, but any enhanced levels of NH_3 must be taken into consideration when analysing HNO_3 in the $868cm^{-1}$ region.

Fig. B.11: This figure illustrates the highest levels of carbon monoxide recorded above Wollongong between May 1995 and Feb 2002. The spectrum recorded on 01/Jan/2002 under a SZA of 15^{o} is compared to a similar spectrum recorded only 3 days later with CO showing almost normal levels.

Fig. B.12: This figure shows similarly high levels of carbon monoxide later the same day but recorded in a different optical filter region. The spectrum recorded on 01/Jan/2002 under a SZA of 25^{o} is compared to a similar spectrum recorded only 3 days later with CO showing almost normal levels.

Fig. B.13: This figure illustrates the highest levels of H_2CO recorded above Wollongong between May 1995 and Feb 2002. The spectrum recorded on 01/Jan/2002 under a SZA of 27° is compared to a similar spectrum recorded only 3 days later with H_2CO showing almost normal levels.

Fig. B.14: This figure illustrates the highest hydrogen cyanide levels recorded above Wollongong between May 1995 and Feb 2002. The spectrum recorded on 01/Jan/2002 under a SZA of 44° is compared to a similar spectrum recorded 9 days later with HCN showing normal levels.

fire-affected spectra. An example is shown in Figure B.8 featuring a C_2H_4 line at 941.9 cm^{-1} .

The spectrometer was operated at a lower optical path difference than normal (50cm). This compromise was dictated by the expected higher variability of conditions in the optical path and somewhat lower total light fluxes in the infrared. The infrared signals available at the detectors were still fairly good because the smoke did not attenuate the infrared region as much as the visible region and the parallel beam from the solar tracker (60cm primary mirror) was allowed into the spectrometer in full by adjusting a manual iris.

The Nitric Acid windows shown in Figure B.10 are dominated by the much stronger Ammonia features present in the same interval. This illustrates the importance of handling Ammonia interference properly during HNO_3 retrievals, even in the absence of local fires. The $967cm^{-1}$ window that is often used for Ammonia retrieval is shown likewise in Figure B.9.

Carbon monoxide is one of the major combustion products and often used as a tracer to estimate the total amount of fuel burned. High levels of CO are known to harm the respirational and cardiovascular system in humans and animals. The CO observations illustrated in Figures B.11 and B.12 correspond to concentrations of $8\pm 2ppm$ in the lowermost troposphere. These levels are high enough to cause health problems (compare *Li et al.*, 2000, *Paton-Walsh et al.*, 2004).

Formaldehyde (H2CO) is another weak absorber that is difficult to observe when abundances are at typical background levels. Several clear features are prominent in the 2760 to $2764 cm^{-1}$ interval shown in Figure B.13 that correspond to abundances over 100 times above the 6-year mean value.

Hydrogen cyanide is illustrated in Figure B.14 and is the last trace gas discussed here. HCN, like the other bushfire tracers discussed, shows a massive enhancement over background values.

The profile retrieval performed indicates that most of the enhancement in all of the pollutants discussed here occur in the bottom few kilometers of the troposphere. This is in agreement with independent observations of the fire plume, fire locations and the general meteorological conditions.

Table B.1: Total column amounts (TCA) and near ground volume mixing ratios of combustion products observed above Wollongong during bush fires on 01/Jan/2002 and comparison with conditions 3 to 9 days later and with background levels. Measurements for carbon monoxide in the $2100cm^{-1}$ (¹) and in the $4280cm^{-1}$ (²) spectral region were sampling different parts of the plume about 1 hour apart. Note that the VMRs listed are subject to considerable uncertainties (see text for details).

	$01/\mathrm{Jan}/2002$		4 or 10/4	$\operatorname{Jan}/2002$	6-year-mean		
	TCA	VMR	TCA	VMR	TCA	VMR	
Molecule	$\mathrm{molec}/\mathrm{cm}^2$	$30-730\mathrm{m}$	$\mathrm{molec}/\mathrm{cm}^2$	$30-730\mathrm{m}$	$\mathrm{molec}/\mathrm{cm}^2$	$30-730\mathrm{m}$	
$CO^{(1)}$	35.76e18	7.508ppm	5.462 e18	0.840ppm	1.62 e18	$0.126 \mathrm{ppm}$	
$CO^{(2)}$	23.95e18	9.248ppm	2.207 e18	$0.292 \mathrm{ppm}$	1.62 e18	$0.126 \mathrm{ppm}$	
HCN	157.2e15	$91.2 \mathrm{ppb}$	4.557 e15	$0.197 \mathrm{ppb}$	4.262 e15	$0.214 \mathrm{ppb}$	
H2CO	447.1e15	$228.5 \mathrm{ppb}$	1.39e15	$0.126 \mathrm{ppb}$	$3.54\mathrm{e}15$	$1.29 \mathrm{ppb}$	
NH3	310.0e15	111.3ppb	1.03 e15	$0.122 \mathrm{ppb}$	3.39 e15	$0.40 \mathrm{ppb}$	
C2H4	33.23 e16	$87.22 \mathrm{ppb}$	1.366e16	$5.55 \mathrm{ppb}$	N.A.	N.A.	

A more detailed discussion of over 1700 solar spectra recorded under bush-fire affected conditions at the Wollongong station between Dec 2001 and Feb 2003 is found in Paton-Walsh

et al. (2004). Table B.1 summarises the exceptionally high amounts of fire-enhanced trace gas levels observed in the spectra shown here. The spectra were analysed with SFIT2 V3.81 in profile retrieval mode. Meteorological data was based on a radio sonde launched 55kmnorth from the site. Air mass calculations were performed with the enhanced FSCATM code (Meier et al, 2003) using a 205 layer model atmosphere. The atmosphere in the retrieval model was represented by 39 layers. Layer thickness was 700m at the ground increasing by 5% for every layer above. The retrieval parameters were adjusted such that it allowed for very large variability in the lower troposphere.

All Jan 1st spectra showed very high values in the lowermost layer (0 to 700m) dropping sharply with altitude and relaxing into near background conditions above 5km altitude. However, given the low sensitivity of the method to VMR changes near ground (as dictated by the averaging kernels) considerable uncertainties of 40% or more exist for the VMR values reported.

In summary, the enhancements in biomass burning tracers observed at Wollongong on the 1^{st} Jan, 2002, are very high and in many respects exceptional. Total column amounts of CO, HCN, H2CO, NH3, and C2H4 are 22, 37, 126, 91, and approximately 30 times larger than their respective annual mean values, respectively. It must be said in all fairness though that the uncertainties in the volume mixing ratios listed are very large. However, the enhancements in terms of total column amounts are very solid and it stands to reason that the enhancements were located in the lower troposphere given the fire dynamics and meteorological conditions such as they were.

C The infrared solar spectrum (by Frank Hase)

C.1 Introduction

For infrared ground-based high-resolution atmospheric measurements as e.g. performed in the framework of the NDSC (Network for the Detection of Stratospheric Change) the Sun serves as background source to allow for the observation of terrestrial absorption features with high signal to noise ratio. The solar radiation output can be approximated by a blackbody spectrum with brightness temperatures ranging between 4820 K (at 20μ m) and 5730 K (at 5μ m) [Cox, 2000]. Closer examination of the solar spectrum reveals various spectral features interfering with the terrestrial absorption signatures of interest. For this reason it is desirable to model the solar spectral features when simulating atmospheric transmission spectra in the analysis process.

C.2 Astrophysical background

C.2.1 The solar continuum

Fig. A3.1: Temperature and number density stratification in the quiet solar atmosphere according to [Vernazza et al., 1981].

The Sun appears as a sharp edged disk from the UV to the infrared. This is due to the fact, that the absorption coefficient steeply rises with depth, as does the density. In the visual region, the absorption is at a minimum, so the radiation leaves from the deepest layer accessible to observation, resulting in an observed brightness temperature of about 6400 K. The temperature stratification in the photosphere (ca. -100 to 500 km) and overlying chromosphere (ca. 500 to 2100 km) is shown in Fig. A3.1. As can be seen, a temperature minimum is found between photosphere and chromosphere.

The major source of opacity in the solar continuum is due to the overwhelmingly abundant hydrogen [Gray, 1992]. In Fig. A3.2 the absorption coefficient of solar material at a temperature of 5400 K is shown. In the near infrared, the bound-free transition of H^- dominates, whereas towards the mid-infrared the H^- free-free transition is the dominant mechanism. Most photons emerge from a height of about 170 km in the mid IR, where the temperature still decreases with altitude (see Fig. A3.1). Since the opacity rises towards the infrared, the brightness temperature decreases with wavelength. In the infrared, the opacity decreases steeply with altitude. Therefore, although the effective optical depth depends on the inclination of the observers line of sight, the centre-to-limb variation in the solar continuum is quite small [Cox, 2000].

Fig. A3.2: Sources of the solar absorption coefficient due to hydrogen. According to [Gray, 1992]

C.2.2 Solar lines

In the case of a spectral line, the absorption coefficient is enhanced as compared to the adjacent continuum. Since the observed photons then emerge from higher layers where the temperature is lower, absorption lines are observed. In the case of excessive high absorption, the photons emerge from layers well above the temperature minimum, giving rise to some solar emission lines. The spectral lines are due to electronic transitions in atoms, e.g. Fe, as well as due to transitions in diatomic molecules, such as OH, CO, NH, etc. CO is the predominant absorber in the mid infrared with strong features in the regions ca. 1600 to 2300 cm^{-1} and 3700 to 4400 cm^{-1} . Since the effective optical depth and the effective partial columns of

the absorbing species enclosed between two height levels depends upon the inclination of the observers line of sight, centre-to-limb variations in the area and width of solar lines are observed.

C.2.3 Solar rotation and microturbulence

The Sun is revolving within about 25 days with respect to the stars. The angular speed decreases towards the poles, the rotation period is about 31 days at 60° heliographic latitude. The solar equatorial plane is inclined by 7° with respect to Earth's orbital plane. With a solar radius of 696 000 km, the solar equatorial velocity seen from Earth is 1.85 km/s, which leads to an appreciable Doppler shift of solar lines versus telluric lines. If different positions on the solar disc are averaged, the rotation causes a smearing of the lines (Fig. A3.3). (In the case of a rigid rotating sphere with the rotation axis perpendicular to the line of sight, stripes of equal radial velocity increments are projected into straight bands of equal width on the observed disk.)

Fig. A3.3: Observations of the solar disc with a small de-centred field of view reveal the Doppler shifts due to the solar rotation. Measurements by [P. Demoulin, 2001].

In addition to this, energy transport by convection generates vertical motions in the photosphere, with rising hotter bubbles and cooler material sinking in between. The vertical velocities are in the order of 1 km/s. The associated granular structures seen in the photosphere are very small as compared to the size of the solar disk, typically in the order of 1 arcsecond. Thereby many volume elements are averaged in a typical field of view, and the observed linewidths are larger than calculated from the thermal motion alone. There are also slower horizontal flows associated with larger structures (supergranulation).

Radial motion of the observer with respect to the Sun

Due to the elliptical shape of the Earth's orbit, radial velocities up to ± 0.5 km/s emerge in the course of the year. In case of an observer located at the equator, this amplitude equals the diurnal variation due to Earth's rotation (Fig. A3.4). This requires a scaling of the solar spectrum model abscissa.

C.2.4 Solar activity

The solar radiation output is not temporally constant, but shows variations connected with changes of the magnetic field penetrating the Sun's outer layers. There is an overall cycle of magnetic activity of about one decade, but strong variations on much shorter timescales are typical. The magnetic flux is not distributed smoothly over the surface, but forms well defined mostly bipolar magnetic regions. These active regions tend to develop cooler photospheric areas (sunspots), and are surrounded by networks of enhanced radiation output (faculae) (for pictures of the Sun, see http://www.bbso.njit.edu). The total area of sunspots, the effective number of sunspots, and the solar radio emission may serve as indicators for the solar activity (for recent data and links, see http://www.spaceweather.com). There is a much wider variety of phenomena connected to solar activity [Zirin, 1988], that cannot be described here. The variability in the visible and infrared continuum is negligible, but the spectral lines are affected by the solar activity to more or lesser extent, since the temperature stratification in the active regions is modified. Since the phenomena of solar activity are spatially structured, using a field of view that covers a considerable fraction of the solar disc tends to reduce the associated effects on the solar lines.

Fig. A3.4: Annual and diurnal variation of the Sun's radial velocity for an equatorial observer.

C.3 Observations

Considerable regions of the solar spectrum can be observed from high altitude sites such as Kitt Peak [Delbouille et al., 1981; Livingston & Wallace, 1991] and the Jungfraujoch [Farmer et al., 1994; Melen et al., 1995; Delbouille & Roland, 1995]. Balloon-borne measurements at high solar elevation angles suffer much less from telluric absorptions ([Goldman et al., 1996; Sen et al., 1996]). An outstanding reference to the solar absorption features are the sets of solar spectra taken by the ATMOS occultation spectrometer from Earth's orbit [Farmer & Norton, 1989; Geller, 1989; Abrams et al., 1996].

C.4 Modelling

A simple approach is to ratio the observed spectrum by an (appropriately frequency-scaled) ATMOS measurement of the solar spectrum. The drawback of this method lies in the limitations of the ATMOS spectra, which contain noise, some instrumental artifacts, suffering from nonlinearity, asynchronity in observation time and geometry with respect to ongoing ground-based observations, and are convolved with the ILS of the spectrometer. A line-by-line model can avoid some of these problems, and allows the introduction of further refinements, e.g. field of view dependent modelling of the spectrum.

Some current activities in modelling solar absorption features focus on formulating a mathematical description that allows an accurate representation of all aspects of the solar spectrum and its known variability over time and observation geometry with a limited set of adjustable parameters. Ideally, such a model provides *a-priori* knowledge of each parameter's exact value or value range, thereby minimising their impact on the analysis of ground-based high-resolution FTIR observations in the infrared. Amongst these modelling activities are:

- Based on the linelist of solar features deduced from ATMOS measurements [Toon, 2001], Geoffry C. Toon has determined lineshapes and widths of about 17500 lines using ATMOS and MkIV spectra in the 600 6000 cm^{-1} region and Kitt-Peak spectra up to 13000 cm^{-1} . The lineshape is approximated by a Gaussian profile with optional exponential wings. The smear due to the solar rotation is taken into account in an approximate way, by field of view dependent widening of the line's Gaussian core. The variable radial velocity between Sun and observer is also taken into account.
- Curtis P. Rinsland generated a list of solar CO lines starting from the work of [Goorvitch, 1994]. In the calculation of the linestrengths the presence of a layer containing all the CO at 4500 K was assumed [Rinsland et al., 1982; Rinsland et al., 1998]. Recently published improved positions and linestrengths for OH for solar temperatures [Goldman et al., 1998; Rinsland et al., 2002]. Based on Minnaert's approach to describe the profiles of saturated lines by assuming a residual intensity [Minnaert, 1935; Kilston, 1975], these models are incorporated into the SFIT retrieval code and tested on ATMOS spectra. The lineshape used is approximated by a Voigt profile. Various variables, like the shift of the solar spectrum, the value of the residual intensity, the solar column amount, and the widths of the lines can be fitted (by adjusting a microturbulence parameter). The smear due to the solar rotation and the variable radial velocity are not taken into account explicitly.
- In collaboration with P. Demoulin, A. Goldman, CP. Rinsland, and GC. Toon the author is working on a model of the solar lines in the mid-infrared. The model is based on the above mentioned compilations for CO and OH, complemented by GC. Toon's linelist to include features of other origins. For OH and CO, the predicted linestrengths

by the single-layer models are matched to the observed linestrengths by modelling the radiative transfer in the solar atmosphere. This method, and the use of high-resolution ground based measurements pointing at -0.6/0.0/+0.6 solar radii [Demoulin, 2001], allow the estimation of centre-to-limb variations of the area and width of each line. The remaining features are readjusted according to MkIV, ATMOS, and ground-based spectra. The lineshapes are approximated by Voigtian profiles (including a residual intensity in case of OH and CO). The centre-to-limb variations in area and width are approximated by a parabola, and integration over the field of view is performed explicitly, taking into account the centre-to-limb variations as well as the nonrigid rotation of the Sun.

C.5 The solar spectra shown in this work (by A. Meier and F. Hase)

In the next few paragraphs a brief description of the solar spectra used in this work is given. Only some of them are actually shown in the contribution plots while others are included on the supplementary DVD. Please note that the ATMOS spectra were recorded at a 5 times lower spectral resolution as compared to all simulated spectra and the ground-based observations (257cm OPD). The solar spectra of NOAO, Kitt Peak, are also recorded at a lower resolution (100cm OPD) and the GGG simulations are ultimately based on observations with the MkIV FTIR spectrometer normally operated at the maximum 100cm OPD.

It is expected that there are larger differences in general between solar simulations created with Geoff Toon's GGG algorithm and with Frank Hases' new compilation on the one hand, and the SFIT Minneart formulae approach on the other hand, especially in the lineshape, which tends to be broader in the centres of strong lines with the SFIT model. Moreover, the first two spectra will in many cases contain weaker lines of other origin. Even if the differences between GGG simulated spectra and the work by F. Hase are smaller in general, it may be instructive for the reader to see, how much room for interpretation of the raw material involved is still left.

C.5.1 Simulated spectrum by Frank Hase

In the preceding section Frank Hase has given a comprehensive overview on the nature of solar spectra and the difficulties encountered when attempting to simulate realistic solar spectra. The simulation he ran for our specific case covers the spectral interval from 500 to $2350cm^{-1}$ at a point spacing of $0.004cm^{-1}$. The geometry is for an observer in Kiruna (67.84°N, 20.41°E) at local noon. The idealised instrument observing the sun in absence of an atmosphere is said to have an effective field of view of 1.2mrad and an optical path difference of 257cm (or a resolution of $0.004cm^{-1}$ if you prefer). In this case, the Doppler shift introduced by the earth rotating around its axis is negligibly small for all practical purposes, because of the high latitude. Further, it is assumed that the instrument is looking at the centre of the solar disk. This makes centre-to-edge differences across the solar disk negligible for the assumed field of view of 1.2mrad.

Please note that this is work in progress. We would have loved to include simulations up to $9000cm^{-1}$, but decided not to delay the publication of this work unduly. However, you are welcome to contact Frank Hase at frank.hase@imk.fzk.de for obtaining an update that may extend the spectral range of the simulations we were able to include.

C.5.2 ATMOS spectra from space

In 1989 the first high-resolution FTIR went into space in the Atmospheric Trace Molecule Spectroscopy Experiment (ATMOS). The mission, data analysis, and some of the results are descried in Gunson et al., 1996, Abrams et al., 1996, Abbas et al., 1996, Irion et al., 2002. Of particular interest to this work are the high orbit solar spectra described by Farmer and Norton, 1989 and the complementing line identifications by Geller, 1989.

Robert L. Kurucz has compiled a "grand mean" over 20 observed solar spectra from the 1989 ATMOS mission that is available electronically via anonymous ftp (Kurucz, 2002). The spectrum represents the solar intensity integrated through a circular diaphragm centred on the disk and extending out to $\mu = 0.951^8$. All instrumental and background features have been removed. Narrow telluric lines from outgassing in the instrument have not yet been removed. The spectral range is 605.6 to 4800 cm^{-1} .

We also had access to similar solar spectra from the November 1994 mission that are included on the supplemental DVD (file *atmos-11.94*). However, for the 1994 data we had no grand mean over all spectra plus the removal of instrumental artifacts is a difficult issue for someone not intimately familiar with the instrument and mission. All we did with the 1994 data available was a rough intensity normalisation and frequency calibration followed by the merging of 3 spectra across 3 different optical filters to obtain one continuous solar spectrum from the 1994 ATMOS mission.

The ATMOS spectra shown in the main section of this work always show the ATMOS spectrum compiled by Kurucz, because it has a superior signal to noise ratio and the better correction for instrumental artifacts.

C.5.3 Observations from NOAO, Kitt Peak

The NOAO spectra were obtained via anonymous ftp and are accompanied with the following 'restriction on use of these data': "These data are freely available with one restriction: If you use the data or some product based on the data in a published paper, we ask that you include an acknowledgement as follows: NSO/Kitt Peak FTS data used here were produced by NSF/NOAO. For further information contact: F. Hill at fhill@noao.edu." The files are dated 29/Feb/1993. We are more than happy to acknowledge this great work. Our warm thanks to everyone involved in producing these solar spectra.

The NOAO spectra are accompanied by the following explanations and warnings: "The composite solar NOAO spectrum included on the DVD was constructed from the original $25cm^{-1}$ wide spectra obtained with the Fourier Transform Spectrometer at the Mc-Math/Pierce Solar Telescope situated on Kitt Peak, Arizona, and operated by the National Solar Observatory, a Division of the National Optical Astronomy Observatories. NOAO is administered by the Association of Universities for Research in Astronomy, Inc., under cooperative agreement with the National ScienceFoundation.

The parameter "dg", which controlled the extent of the gaps in the original version of the solar component due to strong atmospheric absorption, replaces the last point in the "total". The user is warned that in this version there are no gaps. Instead, the regions where the solar component is undetermined are replaced by linear interpolations between the last "good" points on each side of the undetermined region. In order to identify these interpolated regions the user must either refer to the plots in the original version or use the parameter "dg" in the same way as the authors. This version of "An Atlas of the Solar Spectrum in the Infrared from 1850 to 9000 cm^{-1} (1.1 to 5.4 microns)" (N.S.O. Technical Report #91-001,

⁸There may be some inconsistencies in the diaphragm description that need to be cleared up.

July 1991) by W. Livingston and L. Wallace is meant to be used in conjunction with the original hard-copy version, and the caveats in the text of that version apply here equally.

Finally, the intensities of the spectra in each file have been adjusted to predetermined values. One result is that the intensities are not continuous from file to file. If continuity is required from one file to another, the intensities can be readjusted using the spectra in the overlap region" (end quote).

The original data was available in ASCII files covering 25 cm^{-1} wide intervals plus an overlap of 2 cm^{-1} at either side and were combined into a single composite spectrum by A. Meier after having normalised each spectrum individually prior to merging them. The point density of the original FTS spectra has been maintained with the result that 3061 points are contained in each 25 cm^{-1} interval.

C.5.4 GGG/GFIT solar spectra

The GGG (or GFIT) retrieval software developed at JPL Pasadena (Sen et al., 1996 and Toon et al., 1999) is a very powerful tool for analysing FTIR solar spectra both from highaltitude platforms (balloons) and ground-based sites. GGG can presently simulate much broader intervals than SFIT2 ($100cm^{-1}$ and more) and does not use the Minneart formulae for simulating solar lines. Instead, GGG uses a pseudo-line approach with a linelist derived from both space-borne ATMOS and Mk-IV balloon-borne spectra, as described in section C.4 (page 565).

The solar simulations 'GGG-mir.00' and 'GGG-nir.00' were produced using GGG version 2.12.2. The frequency range is constrained to the available line parameter file, with significant gaps beyond 6000 cm^{-1} . The solar spectrum was calculated in approximately 600 cm^{-1} wide intervals and concatenated into a single spectrum afterwards.

The first file 'GGG-mir.00' spans the middle infrared from 620 to $4380cm^{-1}$. The instrumental settings assumed match the ground-based observations for the Kiruna spectra (OPD 257cm). The second file is 'GGG-nir.00' and spans the near infrared from 3950 to $6420cm^{-1}$ and from 7580 to $9000cm^{-1}$. The instrumental settings again match the corresponding Kiruna ground-based spectra (OPD 120cm). The simulations were carried out by Nicholas B. Jones from University of Wollongong (Thanks Nicholas!).

C.5.5 Other simulations

The following list briefly describes the remaining solar spectra found in the electronic supplement.

- 'solar-oh.00' is a simulation carried out with SFIT2 based on the improved positions and linestrengths for OH for solar temperatures (Goldman et al., 1998; Rinsland et al., 2002). This data set is also referred to as the University of Denver solar OH linelist.
- 'cog-450.00' is the solar CO simulation created with SFIT2 (Minneart formulae) and the cog450.new and coog450.new files that ship with SFIT1.09e.
- 'solar-am.00' is a solar simulation carried out with SFIT2 and the solar-am linelist. The latter is a linelist prepared by Arndt Meier. It is based on a combination of the solar-oh, cog450.new and coog450.new linelists and a substantial number of pseudolines trained individually on ATMOS 1994 spectra. This linelist focuses on microwindows of interest to ground-based observations and achieves typically better residuals with SFIT2 than the original cog450 and solar-oh linelists. This is the 'solar-sim' simulation that is shown in all contribution plots in the main section of this atlas.

- 'Composite.00' and 'Composite.01' are crude attempts to merge the different **observed** solar spectra to provide one solar spectrum covering the full spectral interval of interest. Given the limited availability of observed solar spectra from space, some compromises had to be made to fill observational gaps. The 'observed' spectra are constructed from the following solar spectra:
 - $-500-631 cm^{-1}$ solar-OH simulation from the Denver University linelist,
 - 631-4700 cm^{-1} observed 1989 ATMOS spectrum (Kurucz),
 - $-4700-6420 cm^{-1}$ GGG pseudo-line simulation (based on observed spectra)
 - $-~6420\text{-}7584 cm^{-1}$ NOAO Kitt Peak observed spectra,
 - $-7584-8200 cm^{-1}$ GGG pseudo-line simulation (based on observed spectra)
 - 8200-9000 cm^{-1} NOAO Kitt Peak observed spectra.

'Composite.00' covers the mid-IR interval from 500 to $4350cm^{-1}$ and 'Composite.01' the near-IR interval from 3950 to $9000cm^{-1}$.

D Derivation of pseudo-lines from laboratory cross-sections (by G.C. Toon and B. Sen)

D.1 Introduction

The problem of how best to interpolate/extrapolate laboratory cross- section spectra in temperature and pressure has no simple solution. We have chosen the approach of deriving "pseudo-linelists" to represent the absorption of heavy molecules (e.g. CCl4, CFC-11, CFC-12, CFC-113, HCFC-22, ClNO3, HCFC-142b, N2O5, CF4, SF6) for which only cross-section spectra exist. These pseudo-linelist have been successfully used in the analysis of MkIV balloon spectra (e.g. *Toon et al.*, 1999) and ATMOS Version 3 data (e.g. *Irion et al.*, 2002).

This compilation contains various pseudo-linelists which were derived at JPL by performing spectral fits to laboratory transmittance spectra. The lab spectra themselves were not measured at JPL. They were re-created from published temperature- and pressure-dependent cross-sections, together with information on the ILS, and cell length. These pseudo-linelists are in the HITRAN format and can be used to compute spectra in the same manner as any other linelist. The directory also contains the file, "isotopomer.dat", of molecular parameters (vibration frequencies, temperature-dependences of the rotational partition function) assumed in the derivation of the pseudo-linelists, along with a FORTRAN program "isotopomer.f" defining the parameters and illustrating how to read them.

Each pseudo-linelist was derived by fitting all of the relevant laboratory spectra simultaneously while solving for the 296K strength and the Ground State Energy (E") of each pseudo-line. The pressure-broadened half-width (PBHW) and its temperature dependence were determined "manually", by trying various values and selecting the ones that gave the best overall fit. Generally, for gases without sharp absorption features, the goodness of fit was insensitive to the choice of PBHW, whereas for gases like CFC-12 and HCFC-22 which have sharp Q-branches, the right choice of PBHW is important. Note that for some gases (e.g. CFC-12) the resulting value for the temperature-dependence of the PBHW (0.0) is well outside the normal range (0.5 to 0.8). All lines in a given absorption band were assumed to have the same PBHW and temperature dependence.

The idea of using pseudo-lines to represent broad featureless absorption bands is not new. However, whereas previously workers minimised the number of lines needed by ascribing them an exaggerated PBHW, we achieve the same goal by giving each pseudo-line an exaggerated Doppler width. The advantage of this latter approach is that it allows the correct PBHW to be employed, so that a realistic pressure-dependence can still be simulated, even in cases when all of the laboratory spectra were measured at low pressure (e.g. CF4).

D.2 Advantages of using pseudo-lines

These lists are not intended to supplant proper quantum-mechanically- based linelists. They were derived primarily as a convenient means of interpolating (and extrapolating) the laboratory cross-sections to temperatures and pressures where actual measurements are unavailable (I could not think of a realistic way of doing this directly from the cross-sections). However, in deriving and using these pseudo-linelists, several additional advantages became apparent:

- 1. Since the pseudo-linelists are in the HITRAN format, they can be accessed in exactly the same manner as all the regular gases, avoiding special code to read the raw cross-section spectra and interpolate them to the desired temperatures and pressures.
- 2. Fitting a physically-based function to the laboratory spectra also serves as a quality control measure: Since we are typically trying to determine just two unknowns (S & E")

from 4-30 spectra, the problem is over-determined and so performing the fit provides an assessment of the consistency of the various laboratory spectra. This makes it possible to identify and reject laboratory spectra which are inconsistent with the others, or even to quantify biases between different sets of laboratory spectra, perhaps measured under very different conditions. Furthermore, the retrieval of unphysical (i.e. -ve) values of S and E" provides a warning that serious problems exist.

- 3. Fitting the laboratory spectra provides an opportunity to remove instrumental artifacts. For example, the laboratory cross-sections will always be convolved with the Instrument Line Shape (ILS) of the laboratory spectrometer. In making a pseudo-linelist, the effects of this ILS is removed, since it is included in the forward model which calculates the cross-sections from the pseudo-lines. This is particularly important if the laboratory spectra are measured at a worse spectral resolution than the atmospheric spectra. Another example of removal of an instrumental artifact, is that of channel fringes in the laboratory spectra. If these can be properly fitted they will not be propagated into the pseudo-linelist.
- 4. Fitting the laboratory spectra provides an opportunity to remove absorption lines not belonging to the gas of interest. For example, laboratory spectra acquired over the 1300 to 1900 cm^{-1} region are often contaminated by H2O absorption lines. However, by fitting H2O along with the gas of interest, during the analysis of the laboratory transmittance spectra, propagation of H2O artifacts into the pseudo- linelist of the gas of interest will be greatly reduced.
- 5. Several different laboratory data-sets, even with widely different measurement conditions and spectral resolutions, can easily be assimilated into a single pseudo-linelist.
- 6. At the end of the fitting process, the pseudo list can be checked by comparing the forward model calculation (which uses the pseudo-lines) with the laboratory transmittance spectra. Of course, the agreement will not be perfect since the fit was overconstrained, but the differences are usually <1%.
- 7. Absorption spectrum derived from the pseudolines are guaranteed to be continuous and differentiable functions of pressure and temperature (unlike some bivariate interpolation schemes), which helps minimise artifacts in the retrieved VMR profiles.
- 8. Since all the pseudo-lines in a given band are assumed to have the same PBHW and Doppler widths, only one evaluation of the Voigt lineshape per atmospheric level is necessary to compute the absorption spectrum resulting from all the pseudo-lines (provided that this lineshape is stored). Thus, the speed of using the pseudo-linelists is competitive with 2-D interpolation in the raw cross- sections (assuming one knew a good way of doing this).

D.3 Spacing of pseudo-lines

The choice of line spacing for the pseudo-lines was somewhat arbitrary. We tried to make it as wide as possible to minimise the total number of lines, yet still preserve any structure observed in the laboratory spectra that would also be apparent in an atmospheric spectrum.

Typically, the line spacing was chosen to be similar to the resolution of the laboratory spectra. Note that the positions and spacing of the pseudo-lines are completely independent of the spectral frequencies in the laboratory spectra. This fact makes it possible to simultaneously fit different sets of laboratory spectra. Most of the pseudo-linelists are spaced at $0.01 \ cm^{-1}$, which is ten times larger than an actual Doppler widths of most heavy gases. Although this would not be a problem in the troposphere where the pressure broadening would cause the pseudo-lines to overlap, in the upper stratosphere a high resolution computed spectrum would show narrow lines with large gaps between. To avoid this problem one must artificially increase the Doppler width until it approximately matches the line spacing. A convenient way of doing this is to set the molecular weight to an artificially small value (e.g. 1), however, this has drawbacks if one wants to use pseudo-lines, together with real quantum-mechanical lines, of the same gas in the same interval. Therefore, in all of the pseudo linelists, we have defined the isotope number to be zero. This allows pseudo lines to be easily distinguished from real lines (which have isotope numbers 1-9), and could allow the line-by-line code to explicitly set the Doppler width equal to the pseudo-line spacing whenever it encounters pseudo-lines, avoiding the need to fudge the molecular weight. This is especially helpful for gases like CINO3 for which a proper quantum-mechanically derived linelist (requiring the actual molecular weight) exists for the region around the 780 cm^{-1} Q-branch, but pseudo lines must be used for other regions.

D.4 Line strength

The following expression for line strength was assumed in the derivation of the pseudolinelists:

$$S(T) = S(296K) \cdot (296K/T)^{\beta} \cdot \frac{Qvib(T)}{Qvib(296K)} \cdot \frac{SE(T)}{SE(296K)} \cdot exp\left\{hcE'' \cdot \left(\frac{1}{296K} - \frac{1}{T}\right)\right\}$$

where S(296) is the line strength $(cm^{-1}/\text{molec}/\text{cm}-2)$ at 296K. β is the Temperature Dependence of the Rotational Partition Function.

$$Qvib(T) = II \cdot (1 - exp\{-h \cdot c \cdot Vj/kT\})^{-Gj}$$

is the vibrational partition function and the product is performed over all the vibrational frequencies, Vj, which are read from the file "isotopomer.dat", along with their degeneracies, Gj.

$$SE(T) = (1 - exp\{-h \cdot c \cdot Vi/kT\})$$

is the correction for the Stimulated Emission, Vi being the centre frequency (cm^{-1}) of the line in question. The term $(296K/T)^{\beta}$ is commonly known as the rotational partition function and β is usually (1.0, 1.5, or 2.0) The term $exp\{hcE^{"}(1/296-1/T)\}$ is simply the Boltzmann factor, E" being the ground-state energy (cm^{-1}) .

Most forward models should already have the code to compute the above expression because it is needed for the lighter gases. So it should be a simple matter to extend this capability to the heavy gases. Note that the same expression for S(T) was used for the fitting of the laboratory spectra, so the derived values of S(296) and E" values will only correctly reproduce the laboratory spectra provided that the user employs the same expressions.

Note that in the case of the O2 and N2 Collision Induced Absorption (CIA) bands, the absorption coefficients that are derived from the pseudolines must be multiplied by the atmospheric pressure (in atmospheres) before being used to calculate any optical thicknesses or transmittances. This is because of the pressure-squared dependence of the CIA.

Finally, we want to make it clear that one should not expect the forward calculation made using these pseudo-lines to agree perfectly with individual laboratory spectra, since the pseudo-lines were derived from an over- determined fit to ALL of the laboratory spectra. Differences will arise from noise on the laboratory spectra, and uncertainties in the measurement conditions (T,P,VMR), in addition to inadequacies in the pseudo-line approach.

File	Molecule	Interval	Spacing	Lines	Error	Measurer
cf4.h92	CF4	1250 - 1290	0.0025	16093	4%	Nemtchinov & Varanasi
f12.h92	CFC-12	850 - 950	0.010	10000	2%	Varanasi
	CFC-12	1050 - 1200	0.010	15000	1%	Varanasi
f11.h92	CFC-11	810 - 880	0.010	7000	7%	Varanasi
	CFC-11	1050 - 1120	0.010	7000	6%	Varanasi
ccl4.h92	CCl4	750 - 812	0.010	6201	3%	Varanasi & Nemtchinov
f22.h92	CHF2Cl	776 - 850	0.00742	9977	5%	Varanasi & McDaniel
	CHF2Cl	1080 - 1150	0.010	7001	2%	McDaniel
	CHF2Cl	1290 - 1335	0.010	4501	2%	McDaniel
f113.h92	CFC-113	786 - 990	0.500	408	8%	McDaniel (omitted 203K)
sf6.h92	SF6	925 - 955	0.010	3001	2%	Varanasi
f142b.h92	HCFC-142b	870 - 1270	0.010	40000	4%	Newnham
clno3.h92	ClNO3	690 - 880	0.01	19000	2%	Birk & Wagner
	ClNO3	965 - 1005	0.01	4000	4%	Birk & Wagner
	ClNO3	1090 - 1130	0.01	4000	4%	Birk & Wagner
	ClNO3	1215 - 1330	0.01	11500	3%	Birk & Wagner
	ClNO3	1680 - 1790	0.07142	1540	?	Ballard (only 2 spectra)
n2o5.h92	N2O5	547 - 610	0.160	373	4%	NCAR
	N2O5	709 - 775	0.210	315	2%	NCAR
	N2O5	1194 - 1281	0.350	266	2%	NCAR
	N2O5	1663 - 1793	0.480	271	2%	NCAR
o2_cia.h92	O2	1275 - 1835	5.000	113	?	Thibault et al. (1997)
n2_cia.h92	N2	2030 - 2630	5.000	121	?	Lafferty et al. (1996)

 Table D.1: Molecules and spectral intervals for which pseudo-lines have been calculated.

D.5 Molecules and spectral intervals covered

In the table above (Table D.1) we summarise the gases and spectral intervals for which we have computed pseudo-linelists. We estimated the maximum error in absorber found in refitting the laboratory spectra using the final pseudo-linelist. Note that at specific frequencies, the error in the computed absorption coefficient may well exceed these tabulated values.

D.6 ClONO₂ pseudo-linelist

D.6.1 Introduction

This documents the ClONO2 pseudo-linelist derived at JPL in November 2000 from the laboratory spectra of Manfred Birk and Georg Wagner (Wagner and Birk, 2003), whose work was described at the 2000 HITRAN conference. The measurement conditions for each of these spectra are tabulated below. Each of these spectra covers the 690 to 1330 cm^{-1} region.

D.6.2 Description

First, the cross-sections were converted back into transmittance spectra from knowledge of the cell length and gas concentrations. In transmittance, the noise will be much more constant than in absorbance, especially considering that in some of the spectra, the depth of the 780 cm^{-1} Q-branch is over 80%. The resulting 25 transmittance spectra were then simultaneously fitted (using the GFIT algorithm) by iteratively adjusting the strengths and ground-state energies of the pseudo-lines.

Table D.2: Measurement conditions for each of the laboratory spectra by Wagner and Birk. P_{tot} is the total pressure in mbar. P_{ClNO3} is the ClNO3 partial pressure in mbar.

#	\mathbf{P}_{tot}	P_{ClNO3}	Temp	Resn	Noise	File
1	1.068	1.0680	297.02	.0020	0.000	missing
2	0.558	0.5577	297.20	.0020	0.497	297_000.xy
3	95.08	1.0161	297.39	.0020	0.198	297_100.xy
4	44.76	1.0065	297.44	.0040	0.331	297_050.xy
5	23.91	1.0121	297.13	.0020	0.305	297_025.xy
6	1.013	1.0131	297.00	.00094	0.000	missing
7	0.321	0.3206	189.58	.0020	0.433	190_000.xy
8	96.24	0.6041	189.58	.0055	0.000	missing
9	94.59	0.3027	189.58	.0055	0.573	190_100.xy
10	44.96	0.3015	189.58	.0040	0.382	190_050.xy
11	24.57	0.3061	189.58	.0020	0.542	190_025.xy
12	75.73	0.3017	189.70	.0055	1.000	190_075.xy
13	12.74	0.2999	189.70	.0020	0.717	190_012.xy
14	155.8	0.3022	189.70	.0055	0.480	$190_{-}150.xy$
15	0.603	0.6028	189.60	.00094	0.000	missing
16	95.42	0.6209	219.24	.0055	0.285	219_100.xy
17	0.303	0.3026	219.00	.0020	0.761	219_000.xy
18	154.2	0.3044	218.93	.0083	0.924	219_150.xy
19	53.40	0.3058	218.95	.0040	1.504	219_050.xy
20	26.10	0.3061	218.94	.0020	0.940	$219_025.xy$
21	12.83	0.3033	218.95	.0020	1.060	219_012.xy
22	5.225	0.3007	218.95	.0020	0.752	219_005.xy
23	147.8	0.3029	249.25	.0083	0.516	249_150.xy
24	98.30	0.6034	249.24	.0055	0.425	249_100.xy
25	25.59	0.3135	249.23	.0020	1.590	249_025.xy
26	53.53	0.6078	249.24	.0040	0.346	249_050.xy
27	12.72	0.3032	248.41	.0020	1.295	249_012.xy
28	0.303	0.3025	248.27	.0020	1.607	249_000.xy
29	13.86	0.3028	204.42	.0020	1.000	204_012.xy

D.6.3 Pseudo-line spacing

After trying various line spacings, an interval of 0.01 cm^{-1} was finally chosen. This difficult choice was a trade-off between:

- 1. minimising the number of ClNO3 pseudo lines,
- 2. adequately representing the ClNO3 spectral structure,
- 3. getting the correct slant column abundances of ClNO3.

Having more pseudolines (e.g. $0.002\ cm^{-1}$ spacing) provides better representation of the spectral structure observed in the low pressure laboratory spectra, and gives slightly more accurate representation of their slant column abundances, but the differences were small (<1%).

But most of the atmospheric ClNO3 resides at pressures (25-75 mbar) where this fine structure is smeared by pressure-broadening. So in terms of correctly representing the ClNO3 absorption in spectra of the Earth's atmosphere, $0.01 \ cm^{-1}$ spacing seems to be adequate.

D.6.4 Discussion

Although the new laboratory ClNO3 measurements of Birk and Wagner are clearly the best to date, they are not perfect. Some minor deficiencies became apparent during the fitting of the laboratory spectra, that users of the raw cross-sections should be aware of:

- 1. Channel fringes of up to $\pm 1\%$ amplitude.
- 2. HNO3 absorptions of up to 2% depth are noticeable in the 1310- 1330 cm^{-1} region of spectrum #2 (297K; no air broadening).
- 3. H2O absorption lines are noticeable in the 1312-1321 cm^{-1} region of most spectra. # 16 (219K and 95 mbar) is especially prominant; the 1318.929 cm^{-1} H2O line attaining 8% in depth. Note that these H2O lines are formed at room temperature and at low pressure (inside the FTIR ?), not in the cell containing the ClNO3.

To minimise propagation of these artifacts into the ClNO3 pseudo- linelist, channel fringes, H2O, and HNO3 were all fitted during the pseudo-line iteration process. Otherwise, when analysing atmospheric spectra in the 1320 cm^{-1} region, H2O and HNO3 absorptions would be misidentified as ClNO3, and vice versa.

D.6.5 Implementation

To make best use of these pseudo-lines, the assumed ClNO3 Doppler width must be approximately equal to the $0.01 \ cm^{-1}$ pseudo-line spacing. Otherwise the ClNO3 spectrum will start to appear "spikey" in the upper stratosphere. If your analysis software calculates the Doppler width based on the molecular weight of ClNO3, I suggest reducing it from 97 to 1. Of course, this problem could have been completely avoided by having the ClNO3 pseudo-lines on a 0.001 grid, but then there would have been 40 Mbyte ClNO3 pseudo-linelist, rather than just 4 Mbyte.

D.6.6 Calculation of S and E"

At each line frequency, an effective strength and ground-state energy was derived by nonlinear least squares fitting to the 25 spectra. Prior to this a PBHW of 0.078 cm^{-1} /atm had been chosen since it gave the best overall fits to the pressure dependence of the 780 cm^{-1} Q-branch region. As part of the fitting, the strengths and ground-state energies were both constrained to be +ve.

After deriving the pseudo-line strengths, we noticed that in certain spectral regions (880-965, 1005-1090 and 1130-1215 cm^{-1}) the strengths were all very small. We therefore deleted all the lines from these intervals to minimise the size of the pseudo-linelist and to save time when performing line-by-line calculations in those spectral regions.

Since the Birk laboratory spectra stop at 1330 cm^{-1} , the new ClNO3 pseudo-linelist still contains the old pseudo-lines for the 1680 to 1790 cm^{-1} region, which were based on the measurements of Ballard et al.(JGR, 93, 1659,1988). Note that the 1330–1340 cm^{-1} region, which was previously covered by Ballard's cross-section, is no longer represented in the new list. Table D.3 lists the spectral intervals covered by the new $ClNO_3$ pseudo-linelist.
Table D.3: The spectral intervals covered by the new $ClNO_3$ pseudo-linelist.

$V_{start}-V_{stop}$	$\mathrm{N}_{\mathrm{lines}}$	Δ_{ν}	Spectra
$690 - 880 \ cm^{-1}$	19000	0.01	Birk & Wagner
$965 - 1005 \ cm^{-1}$	4000	0.01	Birk & Wagner
$1090 - 1130 \ cm^{-1}$	4000	0.01	Birk & Wagner
$1215 - 1330 \ cm^{-1}$	11500	0.01	Birk & Wagner
$1680 - 1790 \ cm^{-1}$	1540	0.07142	Ballard et al.

Comparisons of ClNO3 retrievals from MkIV balloon spectra in the 780 cm^{-1} region, suggest that the new pseudo-linelist produces 5-10% smaller ClNO3 amounts than either the Bell linelist or the previous pseudo-linelist derived from the Ballard cross-sections. Furthermore, the new cross-sections of Birk and Wagner provide much better consistency between ClNO3 amounts derived from the 780 and 1290 cm^{-1} regions (previously the latter gave 15% smaller amounts).

Please direct any questions or comments regarding pseudo-lines to: Geoff Toon (Geoffrey.C.Toon@jpl.nasa.gov) or Bhaswar Sen (Bhaswar.Sen@jpl.nasa.gov)

E The spectroscopic data used in this work

In compiling the spectroscopic linelist for this work we carefully reviewed the latest data available freely and decided on HITRAN 2000 as the initial starting point, but included a number of updates and additions as listed in detail below.

HITRAN2000 is the HIgh TRANsmission Molecular Spectroscopic Database, released on 22/Dec/2000 (Rothmann et al., 2003, on-line access at: http://www.hitran.com). We included all official updates available by Aug 2002; i.e. the H2O, CH4, C2H2, NO, NO2, and O2 updates. The molecular indices have been changed to the ATMOS convention. The linelist was then subdivided into blocks of $20cm^{-1}$ as needed for the SFIT2 retrieval and SIMUL109 simulation codes and cover in total the spectral range from 480 to $9020cm^{-1}$. The official HITRAN updates included:

- Oxygen update (v11.0), 1/2001, a total replacement for all oxygen lines.
- Methane update, Linda Brown and Frank Hase, priv. comm. Jun to Aug 2002, supersedes the official HITRAN webpage update available at the time (v11.0), 2/2001, a total replacement for all methane lines. The 2/2001 data are taken from numerous studies of all three isotopes; the merging was performed by Linda R. Brown at the Jet Propulsion Laboratory (linda@regina.jpl.nasa.gov). The latest revision fixes problems in the pressure broadening pointed out by Frank Hase.
- Water-vapour update (v11.0), 4/2001, a total replacement for all water lines. This update makes a correction for some lines that were not part of the extensive update introduced with the Dec 2000 release, but were present on the previous HITRAN'96.
- Acetylene (C2H2) update (v11.0), 7/2001, a total replacement for all acetylene lines. The work is based on a joint effort between groups at the University Pierre et Marie Curie in Paris and the University of Reims (D. Jacquemart et al, submitted to JQSRT).
- Nitric Oxide (NO) update (v11.0), 7/2001, a total replacement for all nitric oxide lines. C. Chackerian et al, J.Mol.Spectrosc. 192, 215-219 (1998) M.N. Spencer et al, J.Mol.Spectrosc. 165, 506-524 (1994)
- Nitrogen Dioxide (NO2) update (v11.0), 9/2001, for the 3-μm region (J.-Y. Mandin et al, J.Mol.Spectrosc. 181, 379-388 (1997)).

The second source of line data are the pseudoline lists prepared by Geoff C. Toon and coworkers (Jet Propulsion Lab.). Details are described in the preceding chapter, Appendix D. Based on interpolations carried out at Denver University (Aaron Goldman), the pseudoline lists presented here are given with a finer point spacing than originally provided by GC Toon. Table E.1 lists all molecules contained in the linelist and the sources of information used.

Other spectroscopic data was obtained from the ATMOS linelist and from individual workers, namely Linda Brown (JPL), Jean-Marie Flaud & Agnes Perrin (University Marie and Pierre Curie, Paris), Robert Toth (JPL, Pasadena CA), Manfred Birk (DLR, Oberpfaffenhofen), Alain Barbe (Univ.Reims, France), and A.S. Pine (Alpine Technol., Germantown MD). Many thanks to these colleagues and to all the contributors of HITRAN.

Pseudo-lines are consistently given the isotopomer index of zero. Since pseudo-linelists are spaced at fairly large intervals, the retrieval code has to add artificial broadening – either by increasing the Doppler width artificially (GC Toon's GGG code) or by fudging the molecular mass to a small value of typically 1 or less (SFIT codes). An isotopomer code of zero flags

Molecule Source for the spectroscopic data CCL2F2 GCT pseudolines (interpolated from Denver University) CCL3F GCT pseudolines (interpolated from Denver University) CCL4 GCT pseudolines (interpolated from Denver University) GCT pseudolines (interpolated from Denver University) CF4 **CFC113** GCT pseudolines (interpolated from Denver University) CHF2CL GCT pseudolines (interpolated from Denver University) CLONO2 GCT pseudolines (interpolated from Denver University) F142B GCT pseudolines (interpolated from Denver University) N2O5GCT pseudolines (interpolated from Denver University) SF6 GCT pseudolines (interpolated from Denver University) JPL linelist (G.C. Toon, priv. comm., 2001) COCL2 HITRAN2000 with official update V11.0 7/2001 C2H2C2H4HITRAN2000 C2H6HITRAN2000, except $2975-2984cm^{-1}$ from Pine, 1999 CH3CL HITRAN2000 HITRAN, Jun 2002 update by Linda Brown superseding the 'official' CH4 HITRAN update V11.0 (2/2001) on the HITRAN homepage. It fixes some erroneous air broadening parameters pointed out by Frank Hase (IMK). CLO HITRAN2000 COHITRAN2000 CO2HITRAN2000 COCLF ATMOS linelist, Brown et al., 1996 COF2 HITRAN2000 H2CO HITRAN2000 H2O HITRAN2000 with official update V11.0 4/2001 (based on R.Toth measurements) added 45 missing lines from R.Toth linelist between 750 and $2721cm^{-1}$ (see below) HITRAN2000 with official update V11.0 4/2001 (based on R.Toth measurements) HDO added 15 missing lines from R. Toth linelist between 1125 and $1288cm^{-1}$ (see below) H2O2Linelist from Agnes Perrin 1998 H2S HITRAN2000 HBR HITRAN2000 HCL HITRAN2000 HCN HITRAN2000 HCOOH Linelist from Agnes Perrin 1999 HF HITRAN2000 HI HITRAN2000 HNO3 HITRAN2000 HO₂ HITRAN2000 HO2NO2 ATMOS linelist, Brown et al., 1996 HOCL HITRAN2000 N2HITRAN2000 N2O new measurements by Robert Toth (JPL) 2000 NH3 HITRAN2000 NO HITRAN2000 with official update V11.0 7/2001 HITRAN2000 with official update V11.0 9/2001 NO2 extended from 4117 to $4203 cm^{-1}$ with ATMOS linelist HITRAN2000 with official update V11.0 1/2001 O2O3 HITRAN2000, extended beyond $4500 cm^{-1}$ with data from Barbe 2000 heavy isotopomers from new linelists by Flaud & Perrin OCS HITRAN2000, linewidth of numerous weaker lines updated according to GC Toon linelist OH HITRAN2000 SO2HITRAN2000

Table E.1: Overview over all molecules contained in the linelist and their respective sources.

the line as a pseudo-line to the retrieval code. Beware that the general distributions of SFIT1 and SFIT2 versions 3.81 and prior cannot handle isotopic codes of zero.

The line intensity of one water vapour line in the popular HNO3 window near $873 cm^{-1}$ has been changed from 1.4E-26 to 3.0E-27 as it is obviously inconsistent with observations. This inconsistency was confirmed by GC Toon. The change suggested here is within the measurement uncertainties (priv. comm. with the original H2O linelist author Bob Toth, 2002).

original HITRAN water vapour data line changed from

11 872.96946 1.432E-26 5.162E+00.0200.2000 4201.25290.350.020000 1 119 614 18 315 233251318 to

11 872.96946 3.000E-27 5.162E+00.0200.2000 4201.25290.350.020000 1 119 614 18 315 233251318

Some H2O and HDO lines that are listed in the original data from Bob Toth were absent in the HITRAN update largely based on the Toth data. A few of these lines are located in suitable windows and corresponding absorptions were seen in spectra recorded at the much wetter site of Wollongong that could be ascribed to the missing lines. Hence, it was decided to include these missing water lines in the present linelist:

The following 15 HDO lines were missing in the latest HITRAN files (taken from R. Toth linelist, priv.comm. Jun 2000):

 491
 1125.951700
 1.391E-27
 1.925E-04.0717.0000
 1693.4442
 .64
 .000000
 2
 113
 112
 13
 4
 9
 00
 0
 0

 491
 1151.427400
 1.510E-27
 3.510E-04.0681.0000
 1804.8403
 .64
 .000000
 2
 113
 11
 15
 412
 000
 0
 0
 0

 491
 1161.946100
 1.410E-27
 1.281E-03.0712.0000
 2115.6558
 .64
 .000000
 2
 114
 311
 15
 412
 000
 0
 0
 0

 491
 1181.763200
 1.211E-27
 4.074E-06.0785.0000
 0818.0136
 .64
 .000000
 2
 110
 2
 9
 10
 4
 6
 000
 0
 0

 491
 1192.52600
 1.071E-27
 1.058E-05.0772.0000
 1110.7600
 .64
 .000000
 2
 1<8</td>
 3
 5
 000
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0

45 Lines found in Bob Toth's linelist (Jun 2000) but not in HITRAN V.11 4/2001 13 0751.406000 2.390E-26 3.407E-02.0137.0000 2322.7530 .64 .000000 1 115 312 14 213 000 0 0 0 11 0846.182703 2.020E-27 2.985E-02.0145.0000 4243.1620 .64 .000000 2 216 313 15 214 40016 0 0 11 0905.278373 1.710E-27 4.616E-03.0487.0000 3879.7200 .64 .000000 2 214 6 8 13 311 30016 0 0 11 0906.150200 3.850E-27 7.778E-09.0463.0000 0882.8910 .64 .000000 1 1 8 8 0 08 1 7 000 0 0 0 11 0907.046033 1.630E-27 1.692E-03.0416.0000 3650.5070 .64 .000000 1 1 8 8 0 08 1 7 000 0 0 0 11 0918.821400 2.540E-27 5.375E-02.0117.0000 4608.2250 .64 .000000 1 120 615 19 316 000 0 0 0 11 0921.581800 5.420E-27 1.227E-05.0332.0000 2426.1950 .64 .000000 1 113 9 5 13 410 000 0 0 0 11 0973.828700 3.730E-27 3.909E-07.0564.0000 1998.9960 .64 .000000 1 1110 1 11 5 6 000 0 0 0 11 0991.388700 4.170E-27 1.512E-06.0341.0000 2275.3730 .64 .000000 1 11210 3 12 5 8 000 0 0 11 1049.755100 7.360E-27 1.594E-07.0316.0000 1774.6190 .64 .000000 1 1112 8 4 12 111 000 0 0 11 1049.755100 7.360E-27 1.594E-07.0356.0000 1690.6650 .64 .000000 1 111 9 2 11 2 9 000 0 0 13 1052.528200 1.640E-27 3.225E-05.1000.4205 1405.1480 .68 .000000 2 1 7 3 4 08 6 3 002 5 514 13 1062.154600 1.780E-27 4.924E-05.0758.3283 1251.2910 .68 .000000 2 1 7 2 6 08 5 3 002 5 516

11	1085.550200	1.070E-26	1.054E-06	.0296.0000	2042.3120	.64	.000000	1	113	8	5	13	11	2 000	0 (0 0
11	1100.892400	4.350E-27	1.141E-06	.0312.0000	2246.8880	.64	.000000	1	113	9	4	13	21	1 000	0 (0 0
11	1129.673000	1.000E-26	3.441E-06	.0683.3009	2009.8050	.68	.000000	2	1 9	5	5	09	8	2 002	2 0	016
13	1210.548800	1.840E-27	9.362E-03	.0547.2991	2430.9250	.68	.000000	2	111	5	7	12	6	6 002	2 5	514
13	1223.007100	1.610E-27	1.643E-02	.0502.2332	2802.2900	.68	.000000	2	111	7	4	12	8	5 002	2 5	514
11	1276.468000	1.800E-26	1.113E-07	.0758.3283	1411.6120	.68	.000000	2	1 9	1	8	08	6	3 002	2 0	016
11	1299.444900	1.100E-26	4.390E-07	.0617.2818	1616.4520	.68	.000000	2	111	11	1	10	4	6 002	2 0	016
13	1314.005000	1.790E-27	2.798E-02	.0572.3230	2544.4340	.68	.000000	3	25	4	2	06	5	1 002	2 5	514
11	1335.796300	6.810E-27	2.295E-05	.0306.0000	2586.5290	.64	.000000	1	114:	10	4	13	5	9 000	0 (0 0
11	1885.152900	1.180E-26	1.959E-07	.0504.2373	1774.7510	.68	.000000	2	111	5	6	12	21	1 002	2 5	516
13	1964.667700	2.120E-27	3.509E-03	.0608.3397	2391.5670	.68	.000000	3	27	5	2	06	4	3 002	2 5	514
11	1966.615000	2.400E-26	1.972E-09	.0644.3841	0586.2430	.68	.000000	2	1 6	5	2	07	0	7 002	2 0	016
13	1977.437600	1.600E-27	1.051E-06	.0644.3841	0585.1620	.68	.000000	2	1 7	4	4	07	1	7 002	2 5	516
13	1995.039300	2.430E-27	4.824E-03	.0406.2086	2397.7810	.68	.000000	3	2 6	6	1	05	5	002	2 5	514
13	2015.175100	1.600E-27	6.520E-07	.0758.3283	0742.4910	.68	.000000	2	1 8	4	5	08	1	8 002	2 5	516
11	2077.502900	1.070E-26	8.135E-05	.0737.0000	2998.7681	.64	.000000	4	210	3	8	09	4	5 000	0 (0 0
11	2107.325900	1.130E-26	5.035E-04	.0762.0000	3139.4771	.64	.000000	4	210	4	6	09	5	5 000	0 (0 0
11	2142.495100	2.900E-26	2.249E-06	.0844.4389	1908.0170	.68	.000000	3	25	5	0	04	2	3 002	2 0	016
13	2156.743800	1.600E-27	3.359E-04	.0801.3967	2120.5160	.68	.000000	2	113	5	8	12	4	9 002	2 5	514
13	2178.402000	2.770E-27	6.795E-04	.0547.3000	2137.4200	.68	.000000	2	112	7	6	11	6	5 002	2 5	514
11	2394.851100	1.400E-25	3.544E-07	.0858.3304	1131.7760	.68	.000000	2	1 9	7	3	08	4	4 002	2 0	014
11	2395.413100	5.500E-26	2.114E-08	.0758.3283	0744.0640	.68	.000000	2	1 9	5	5	08	0	8 002	2 0	016
11	2410.478000	2.300E-25	5.238E-07	.0907.3513	1360.2360	.68	.000000	2	110	7	4	09	4	5 002	2 0	014
11	2421.903100	2.900E-26	6.199E-07	.0918.3586	1616.4520	.68	.000000	2	111	7	5	10	4	6 002	2 0	014
11	2430.316900	2.300E-26	5.888E-07	.0879.3914	1899.0080	.68	.000000	2	112	7	6	11	4	7 002	2 0	014
11	2430.532000	1.000E-26	2.850E-07	.0558.2600	1695.0710	.68	.000000	2	112	6	6	11	3	9 002	2 0	016
11	2480.210900	2.300E-26	7.227E-07	.0504.2373	1962.5080	.68	.000000	2	113	6	7	12	31	002	2 0	016
11	2507.137900	1.100E-26	2.659E-09	.0710.4228	0602.7740	.68	.000000	2	1 7	7	1	06	2	4 002	2 0	016
11	2516.293900	1.300E-26	5.983E-08	.0558.2600	1327.1190	.68	.000000	2	112	4	8	11	11	1 002	2 0	016
11	2688.601100	1.200E-26	2.504E-09	.0644.3841	0842.3570	.68	.000000	2	1 8	8	1	07	3	4 002	2 0	016
11	2702.259000	1.100E-26	1.660E-08	.0758.3283	1050.1580	.68	.000000	2	1 9	8	2	08	3	5 002	2 0	016
11	2720.053000	1.100E-26	6.533E-10	.0644.3841	0586.2430	.68	.000000	2	18	7	2	07	0	7 002	2 0	016

Where pressure shifts were missing in the spectroscopic linelist, these were sometimes estimated for the example fit shown. The electronic supplement lists all spectroscopic lines of which the pressure shifts or line position were adjusted to be more consistent with observations. The resulting linelist can be found on the supplementary DVD in electronic from. It is identical to the linelist used throughout this work, except for heavy ozone isotopomers above $1800 cm^{-1}$ where we were not at liberty to pass on the latest spectroscopic line parameters.

References for the spectroscopic linelist used

- Barbe, Alain; U.F.R. Sciences Exactes et Naturelles, Molecular Spectroscopy and Atmospheric Applications Group, Moulin de la Housse B.P., 1039, 51687 Reims Cedex, E-mail: alain. barbe@univ-reims.fr
- Brown, L.R.; M.R. Gunson, R.A. Toth, F.W. Irion, C.P. Rinsland, and A. Goldman, "The 1995 Atmospheric Trace Molecule Spectroscopy (ATMOS) Linelist", Appl. Opt., 35, 2828-2848, 1996.
- Hase, Frank (frank.hase@imk.fzk.de) and Linda Brown (linda@regina.jpl.nasa.gov), the CH4 linelist used in this work superseding the ch4 update officially available from the HITRAN web pages at the time, priv. comm. May to Aug 2002.

- Perrin A., Flaud J.-M., Valentin A., Camy-Peyret C., and Gbaguidi H., "The n1 and n2 bands of the ¹⁷O¹⁶O¹⁷O isotopomer of ozone", J. Mol. Spectrosc., 200, 248-252, 2000.
- Perrin, A.; C.P. Rinsland, & A. Goldman, "Spectral Parameters for the n6 Region of HCOOH and its Measurement in the Tropospheric Spectrum", J. Geophys. Res., 104, 18661-18666, 1999.
- **Perrin, A.;** J.-M. Flaud, F. Keller, et al., "The $\nu 1 + \nu 3$ bands of the ${}^{16}O {}^{17}O {}^{16}O$ and ${}^{16}O {}^{17}O {}^{16}O$ isotopomers of ozone", J. Molec. Spectrosc., in press, 2001.
- Perrin, A.; J.-M. Flaud, P. Arcas, A. Goldman, R.D. Blatherwick, F.J. Murcray, A. Valentin, C. Camy-Peyret, J.-Y. Mandin, V. Dana, S. Klee, and M. Winnewisser, "New Line Position and (Absolute) Line Intensities for the Far Infrared and n6 bands of H₂O₂", Atmospheric Spectroscopy Applications (ASA) Conference, University of Reims, France, Sept. 1-3, 1999.
- Pine A.S., Rinsland C.P., "The role of torsional hot bands in modeling atmospheric ethane", J. Quant. Spectrosc. Radiat. Transfer, 62 (4): 445-458, Jul 1999.
- Rinsland C.P., Jones N.B., Connor B.J., Logan J.A., Pougatchev N.S., Goldman A., Murcray F.J., Stephen T.M., Pine A.S., Zander R., Mahieu E., and Demoulin P., "Northern and southern hemisphere ground-based infrared spectroscopic measurements of tropospheric carbon monoxide and ethane", J. Geophys. Res., 103 (D21): 28197-28217, Nov 20 1998.
- Rothman, L.S.; A. Barbe, D.C. Benner, L.R. Brown, C. Camy-Peyret, M.R. Carleer, K. Chance, C. Clerbaux, V. Dana, V.M. Devi, A. Fayt, J.-M. Flaud, R.R. Gamache, A. Goldman, D. Jacquemart, K.W. Jucks, W.J. Lafferty, J.-Y. Mandin, S.T. Massie, V. Nemtchinov, D.A. Newnham, A. Perrin, C.P. Rinsland, J. Schroeder, K.M. Smith, M.A.H. Smith, K. Tang, R.A. Toth, J. Vander Auwera, P. Varanasi, and K. Yoshino, The HITRAN Molecular Spectroscopic Database: Edition of 2000 Including Updates of 2001; HITRAN Special Issue, J. Quant. Spectrosc. Radiat. Transfer, vol. 82, numbers 1-4, 15 Nov to 15 Dec 2003.
- Toon, G.C.; J.-F. Blavier, B. Sen, and B.J. Drouin, "Atmospheric COCl2 measured by solar occultation spectrometry", Geophys. Res. Let., 28, 2835-2838, July 15, 2001.
- Toth, Robert A.; "Air and N2 broadening parameters of HDO and D2O, 709 to 1936cm⁻¹", J. Molec. Spectrosc., 198, 358-370, 1999.
- Toth, Robert A.; "Air and N2 broadening parameters of water vapor: 604 to $2271cm^{-1}$ ", J. Molec. Spectrosc., **201**, 218-243, 2000.
- Toth, Robert A.; "HDO and D2O Low Pressure, Long Path Spectra in the 600 3100cm⁻¹ Region", J. Molec. Spectrosc., **195**, 73-97, 1999.
- Toth, Robert A.; "Line positions and strengths of N2O between 3515 and $7800cm^{-1}$ ", J. Molec. Spectrosc., 197, 158-187, 1999.
- Toth, Robert A.; "Line strengths $(900-3600cm^{-1})$, self-broadened linewidths, and frequency shifts $(1800-2360cm^{-1})$ of N2O", Appl. Optics, **32**, 7326-7365, 1993.
- Toth, Robert A.; "Line strengths of N2O in the 1120-1440*cm*⁻¹ region", Appl.Optics, 23, 1825-1836, 1984.
- Toth, Robert A.; "Line-frequency measurements and analysis of N2O between 900 and 4700 cm^{-1} ", Appl. Optics, 30, 5289-5315, 1991.
- Toth, Robert A.; "N2- and air-broadened linewidths and frequency shifts of N2O", J. Quant. Spectrosc. Radiat. Transfer, 66, 285-304, 2000.
- Toth, Robert A.; "Water vapor measurements between 590 and 2582cm⁻¹: Line positions and strengths", J. Molec. Spectrosc., **190**, 379-396, 1998.

Acknowledgements

We like to thank all colleagues that sent us example spectra, lists of their favourite microwindows, spectroscopic linelists, or contributed to the discussion. Special thanks go to Nicholas Jones, University of Wollongong, for creating the solar simulations with the GFIT/GGG algorithm and to Clare Murphy, also University of Wollongong, for cross-reading the draft and making many useful suggestions for improvement. Our thanks also to Rick McGregor and Mats Luspa and everyone else from IRF that helped in getting this book into print. We also like to thank the developers of the SFIT2, FSCATM, GGG/GFIT and simul108 software that were used for the simulation and analysis of spectra, the authors of the freeware software Gnuplot and LATEX that were employed to create the figures and layout of this work and the large number of scientists that contributed to the spectroscopic linelists used. And last not least we thank our families and friends for their patience and support.

References

- Abbas, M.M.; J. Guo, B. Carli, F. Mencaraglia, A. Bonetti, M. Carlotti, and I.G. Nolt, "Stratospheric O3, H2O and HDO distributions from balloon-based far-infrared observations", J. Geophys. Res., 92, 8354-8364, 1987.
- Abbas, M.M.; J. Guo, B. Carli, F. Mencaraglia, M. Carlotti, and I.G. Nolt, "Heavy ozone distribution in the stratosphere from far-infrared observations", J. Geophys. Res., 92, 13231-13239, 1987.
- Abbas, M.M.; J. Guo, B. Carli, F. Mencaraglia, M. Carlotti, and I.G. Nolt, "Stratospheric distribution of HCN from far-infrared observations", Geophys. Res. Lett., 14, 531-534, 1987.
- Abbas, M.M.; M.J. Glenn, V.G. Kunde, J. Brasunas, B.J. Conrath, W.C. Maguire, and J.R. Herman, "Simultaneous measurement of stratospheric O3, H2O, CH4 and N2O profiles from infrared limb thermal emissions", J. Geophys. Res., 92, 8343–8353, 1987.
- Abbas, M.M.; M.J.Glenn, I.G. Nolt, B. Carli, F. Mencaraglia, and M. Carlotti, "Far-infrared measurement of stratospheric carbon monoxide", Geophys. Res. Lett., 15, 140-143, 1988.
- Abbas, M.M.; V.G. Kunde, J.C. Brasunas, W.C. Maguire, J.R. Herman, M.J. Glenn, S.T. Massie, and W.A. Shaffer, "Nighttime measurements of stratospheric NOx from balloonborne limb thermal emissions observations", Workshop on Tropospheric Ozone and Quadrennial Ozone Symposium, Abstracts, 151, 1988.
- Abbas, M.M.; V.G. Kunde, J.C. Brasunas, J.R. Herman, and S.T. Massie, "Nighttime reactive nitrogen measurements from stratospheric infrared thermal emission observations", J. Geophys. Res., 96, 10885– 10897, 1991.
- Abbas, M.M.; H. A. Michelsen, M. R. Gunson, M. C. Abrams, M. J. Newchurch, R. J. Salawitch, A. Y. Chang, A. Goldman, F. W. Irion, G. L. Manney, E. J. Moyer, R. Nagaraju, C. P. Rinsland, G. P. Stiller, and R. Zander, "Seasonal variations of water vapor in the lower stratosphere inferred from ATMOS/ATLAS-3 measurements of H2O and CH4", Geophys. Res. Lett., 23, 2401-2404, 1996.
- Abbas, M.M.; M.G. Gunson, M.J. Newchurch, H.A. Michelsen, R.J. Salawitch, A. Allen, M.C. Abrams, A.Y. Chang, A. Goldman, F.W. Irion, E.J. Moyer, R. Nagaraju, C.P. Rinsland, G.P. Stiller, and R. Zander, "The hydrogen budget of the stratosphere inferred from ATMOS measurements of H2O and CH4", Geophys. Res. Lett., 23, 2405-2408, 1996.
- Abrams, M.C.; A. Goldman, M.R. Gunson, C.P. Rinsland, and R. Zander, "Observations of the infrared solar spectrum from space by the ATMOS experiment", Applied Optics, Vol. 35, No. 16, 2747-2751, 1996.
- Abrams, M.C.; M.R. Gunson, A.Y. Chang, C.P. Rinsland, and R. Zander, "Remote sensing of the Earth's atmosphere from space with high-resolution Fourier-transform spectroscopy: development and methodology of data processing for the Atmospheric Trace Molecule Spectroscopy experiment", Appl. Opt., 35, 2774-2786, 1996.
- Abrams, M.C.; M.R. Gunson, A.Y. Chang, G.L. Manney, M.M. Abbas, A. Goldman, F.W. Irion, H.A. Michelsen, M.J. Newchurch, C.P. Rinsland, R.J. Salawitch, G.P. Stiller, and R. Zander, "ATMOS/ ATLAS-3 observations of long-lived tracers and descent in the Antarctic vortex in November 1994", Geophys. Res. Lett., 23, 2345-2348, 1996.
- Abrams, M.C.; M.R. Gunson, A.Y. Chang, G.L. Manney, M.M. Abbas, A. Goldman, F.W. Irion, H.A. Michelsen, M.J. Newchurch, C.P. Rinsland, R.J. Salawitch, G.P. Stiller, and R. Zander, "ATMOS/ ATLAS-3 observations of trace gas transport in the Antarctic vortex in November 1994", Geophys. Res. Lett., 23, 2345-2348, 1996.
- Abrams, M.C.; M.R. Gunson, A.Y. Chang, M.M. Abbas, A.G. Goldman, F.W. Irion, H.A. Michelsen, M.J. Newchurch, C.P. Rinsland, G.P. Stiller, and R. Zander, "On the assessment and uncertainty of atmospheric trace gas burden measurements with high-resolution infrared solar occultation spectra from space by the ATMOS experiment", Geophys. Res. Lett., 23, 2337-2340, 1996.
- Abrams, M.C.; M.R. Gunson, L.L. Lowes, C.P. Rinsland, and R. Zander, "Pressure sounding of the middle atmosphere from ATMOS solar occultation measurements of atmospheric CO2 absorption lines", Appl. Opt., 35, 2810-2820, 1996.
- Adrian, G.P.; T. Blumenstock, H. Fischer, L. Gerhardt, T. Gulde, H. Oelhaf, P. Thomas, and O. Trieschmann, "Column amounts of trace gases derived from ground-based measurements with MIPAS during CHEOPS III", Geophys. Res. Lett., 18, 783–786, 1991.

- Adrian, G.P.; T.v. Clarmann, H. Fischer, and H. Oelhaf, "Trace gas measurements with the ground-based MIPAS experiment during the arctic winters 1990 to 1992", in IRS'92: Current problems in atmospheric radiation, edited by S. Keevallik and O. Kärner, Deepak Publishing, Hampton, Virginia, 359–362, 1993.
- Adrian, G.P.; M. Baumann, T. Blumenstock, H. Fischer, A. Friedle, L. Gerhardt, G. Maucher, H. Oelhaf, W. Scheuerpflug, P. Thomas, O. Trieschmann, and A. Wegner, "First results of ground-based FTIR measurements of atmospheric trace gases in north Sweden and Greenland during EASOE", Geophys. Res. Lett., 21, 1343–1346, 1994.
- Albrecht T.; J. Notholt, R. Wolke, S. Solberg, C. Dye, H. Malberg, "Variations of CH2O and C2H2 determined from groundbased FTIR measurements and comparison with model results", Adv. Space Res. 29, 1713-1718, 2002.
- Amanatidis, G.; A. Bais, A. Kelesis, C. Zerefos, and J. Ziomas," Two years of regular stratospheric NO2 measurements in Greece using twilight photometry", Workshop on Tropospheric Ozone and Quadrennial Ozone Symposium, Abstracts, 162, 1988.
- Arlander, D.W.; A. Barbe, M.T. Bourgeois, A. Hamdouni, J.-M. Flaud, C. Camy-Peyret, and P. Demoulin, "The identification of ¹⁶O¹⁸O¹⁶O and ¹⁶O¹⁶O¹⁸O ozone isotopes in high resolution ground-based FTIR spectra", J. Quant. Spectrosc. Radiat. Transfer, **52**, 267–271, 1994.
- **Backer-Barilly, M.R. De;** A. Barbe, S.A. Tashkun, V.G. Tyuterev, and A. Chichery, "The $5\nu\beta$ Bands of ¹⁸O Enriched Ozone: Line Positions of ¹⁶O¹⁶O¹⁸O, ¹⁶O¹⁸O¹⁸O and ¹⁸O¹⁶O¹⁸O", Mol. Phys., **100**, 3499–3506, 2002.
- Backer-Barilly, M.R. De; A. Barbe, V.G. Tyuterev, A. Chichery, and M.T. Bourgeois, "High-Resolution Infrared Spectra of the ¹⁶O¹⁸O¹⁶O Ozone Isotopomer in the Range 900-5000 cm⁻¹: Line Positions", J. Mol. Spectrosc., 216, 454–464, 2002.
- Backer-Barilly, M.R. De; A. Barbe, and V.G. Tyuterev, "Infrared Spectrum of ¹⁶O¹⁸O¹⁶O in the 5μm Range. Positions, Intensities, and Atmospheric Applications, Atmospheric and Oceanic Optics", 16, 183–188, 2003.
- Barbe, A.; L. Regalia, J.J. Plateaux, P. v.d. Heyden and X. Thomas, "Temperature dependance of N₂ and O₂ broadening coefficients of ozone", J. Mol. Spectrosc., 180, 175-180, 1996.
- Barbe, A.; O. Sulakshina, J.J. Plateaux, V.G. Tyuterev and S. Bouazza, "Line positions and intensities of the 3\nu1+\nu3 band ozone", J. Mol. Spectrosc., 175, 296-302, 1996.
- Barbe, A.; and J.J. Plateaux, "Analysis of the 2v1+2v3 band of ozone: line positions and intensities", J. Quant. Spectrosc. Radiat. Transfer, 55, 449-455, 1996.
- Barbe, A.; "High Resolution Infrared Spectroscopy of Ozone: A Support for Atmospheric Observations, Computational Technologies", 7, 12–23, 2002.
- Barret, B.; M. De Mazière, P. Demoulin, E. Mahieu, F. Mélen, B.J. Connor, and N.B. Jones, "Investigation of height-resolved information in ground-based, high-resolution Fourier infrared solar spectra above the Jungfraujoch", in Proceedings of the "Quadrennial Ozone Symposium", Sapporo, Japan, July 3-8, 2000, 301-302, 2000.
- Barret, B.; M. De Mazière, and P. Demoulin, "Retrieval and characterisation of ozone profiles from solar infrared spectra at the Jungfraujoch", J. Geophys. Res. 107, No. D24, 4788, 2002.
- Barrett, J.; P. Solomon, M. Jaramillo, R.de Zafra, A. Parrish, and L. Emmons, "Daytime ClO over McMurdo in September 1987: altitude profile retrieval accuracy", Polar Ozone Workshop, Session IV, May 1988.
- Barrett, J.; P.M. Solomon, R.L.de Zafra, M. Jaramillo, L. Emmons, and A. Parrish, "Formation of the Antarctic ozone hole by CO dimer formation", Nature, **336**, 455-458, 1988.
- Becker, E.; J. Notholt, A. Herber, "Tropospheric aerosol measurements in the Arctic by FTIR emission and Star photometer extinction spectroscopy", Geophys. Res. Lett. 26, 1711-1714, 1999.
- Becker, E.; J. Notholt, "Intercomparison and validation of FTIR measurements with the sun, the moon and emission in the Arctic", J. Quant. Spec. Rad. Transfer, 65, 779-786, 2000.
- Bell, W.; N.A.Martin, T.D.Gardiner, N.R.Swann, P.T.Woods, P.F.Fogal, and J.W.Waters, "Column measurements of stratospheric trace species over Are, Sweden in the winter of 1991-1992", Geophys. Res. Lett., 21, 1347-1350, 1994.
- Bell, W.; N.A. Martin, P.T. Woods, T.D. Gardiner, N.R. Swann, P.F. Fogal, and J.W. Waters, "Column measurements of stratospheric trace species over Are, Sweden in the winter of 1991-1992", Geophys. Res. Lett. 21, 1347–1350, 1994.

- Bell, W.; C. Paton-Walsh, P.T. Woods, T.D.. Gardiner, N.R. Swann, N.A. Martin, L. Donohoe, M.P. Chipperfield, "Measurements of Stratospheric Chlorine Monoxide (ClO) from Ground-based FTIR Observations", J. Atmos. Chem., 24, 285-297, 1996.
- Bell, W.; C. Paton-Walsh, P.T. Woods, T.D. Gardiner, L. Donohoe, A. Gould, D. Secker, S. Naughten, N.R. Swann, N.A. Martin, L.E. Page, M.P. Chipperfield, A.M. Lee, and S. Pullen, "Ground-based FTIR Measurements of Stratospheric Trace Species from Aberdeen During Winter and Spring 1993/94 and 1994/95 and Comparison with a 3D Model", J. Atmos. Chem. 30, 119-130, 1998.
- Bell, W.; C. Paton-Walsh, P.T. Woods, T.D. Gardiner, M.P. Chipperfield, and A.M. Lee, "Ground-based FTIR Measurements with High Temporal Resolution", J. Atmos. Chem. 30, 131-140, 1998.
- Bernardo, Cirilo; "Measurement of Instrument Line Shape Functions of High-Resolution FTIR Spectrometers and their Application to the Analysis of Spectra", PhD Thesis, University of Wollongong, Australia, 2002.
- Bièvre, P. de; M. Gallet, N.E. Holden, and I.L. Barnes, "Isotopic abundances and atomic weights of the elements", J. Phys. Chem. Ref. Data 13, 809–891, 1984.
- Blatherwick, R.D.; D.G. Murcray, F.H. Murcray, F.J. Murcray, A. Goldman, G.A. Vanasse, S.T. Massie, and R.J. Cicerone, "Infrared emission measurements of morning stratospheric N₂O₅", J. Geophys. Res., 94, 18337–18340, 1989.
- Blatherwick, R.D.; F.J. Murcray, X. Liu and J. Kosters, "Measurements of HNO3, NO2, NO, O3, N2O5, N2O and CH4 From High Resolution Solar Occultation Spectra Before and After the Pinatubo Eruption", supplement to Eos, 77(46), F121(A42A-2), 1996.
- Blumenstock, T.; H. Fischer, A. Friedle, F. Hase, J. Schreiber, and P. Thomas, "Column amounts of trace gases measured by ground-based FTIR spectroscopy near Kiruna, Sweden, during winter 1994/95", Proceedings of the third European workshop on Polar stratospheric ozone, Schliersee 1995, European Commission - Air pollution research report 56, 340–343, 1996.
- Blumenstock, T.; H. Fischer, A. Friedle, F. Hase, and P. Thomas, "Column amounts of ClONO2, HCl, HNO3, and HF from ground-based FTIR measurements made near Kiruna, Sweden, in late winter 1994", J. Atmos. Chem. 26, 311-321, 1997.
- Blumenstock, T.; H. Fischer, A. Friedle, G.P. Stiller, P. Thomas, "Column amounts of HCl, ClONO2 and HF measured by ground-based FTIR spectroscopy near Kiruna (S) during winter since 1990", Proceedings of the Quadrennial Ozone Symposium 1996, 469–472, 1998.
- Blumenstock, T.; H. Fischer, S. Fietze, G.P. Stiller, M. Richter, P. Thomas, A. Meier, and H. Nakajima, "Time Series of HNO3 Column Amounts Measured by Ground-Based FTIR Spectroscopy at Kiruna (Sweden) in Winter 1995/96 and 1996/97", Proceedings of the Fourth European Workshop on Polar Stratospheric Ozone, Schliersee 1997, European Commission - Air pollution research report 66, 411– 414, 1998.
- Blumenstock, T.; H. Fischer, F. Hase, G.P. Stiller, R. Ruhnke, D. Yashcov, A. Meier, A. Steen, Y. Kondo, "Ground Based FTIR Measurements of O3, HF, HCl, ClONO2, and HNO3 at Kiruna (Sweden) since Winter 1993/94", Proceedings of the Quadrennial Ozone Symposium, Sapporo 2000, 145–146, 2000.
- **Brasunas, J.C.**; J.R. Herman, V.G. Kunde, W.C. Maguire, L.W. Herath, W.A. Shaffer, M.M. Abbas, and S.T. Massie, "*High resolution, balloonborne emission spectroscopy of trace species in the lower stratosphere:* N_2O_5 ", Workshop on Tropospheric Ozone and Quadrennial Ozone Symposium, Abstracts, 151, 1988.
- Brault, J.W.; "High precision Fourier Transform Spectrometry: The critical role of phase corrections", Mikrochimica Acta, III, 215–227, 1987.
- Brault, J.W.; "New approach to high-precision Fourier-transform spectrometer design", Appl. Apt., 35, June 1996.
- Brown, L.R.; C.B. Farmer, C.P. Rinsland, and R.A. Toth, "Molecular line parameters for the atmospheric trace molecule spectroscopy experiment", Appl. Opt. 26, 5154–5179, 1987.
- Brown, L.R.; C.B. Farmer, C.P. Rinsland, and R. Zander, "Remote sensing of the atmosphere by high resolution infrared absorption spectroscopy", Chapter 2 in "Spectroscopy of the Earth's Atmosphere and Interstellar Medium", pp. 97-151, K. Narahari Rao and A. Weber Eds. Academic Press, Inc. 1992.
- Brown, L.R.; D.C. Benner, J.-P. Champion, V.M. Devi, L. Fejard, R.R. Gamache, T. Gabard, J.C. Hilico, B. Lavorel, M. Lonte, G.C. Mellau, A. Nikitin, A.S. Pine, A. Predoi-Cross, C.P. Rinsland, O. Robert, R.L. Sams, M.A.H. Smith, S.A. Tashkun, and V.G. Tyuterev, "Methane Line Parameters in HITRAN"; HITRAN Special Issue, J. Quant. Spectrosc. Radiat. Transfer, 82, numbers 1-4, 2003.

- Camy-Peyret C.; J.-M. Flaud, A. Perrin, V.M. Devi, C.P. Rinsland, and M.A.H. Smith, "The hybrid-type Volumes ν₁ and ν₃ of ¹⁶O¹⁶O¹⁸O: Line positions and intensities", J. Mol. Spectrosc., **118**, 345–354, 1986.
- Carli, B.; F. Mencaraglia, M. Carlotti, B.M.Dinelli and I.G. Nolt, "Middle atmosphere composition and chemistry submillimeter measurement of stratospheric chlorine monoxide", J. Geophys. Res., 93, 1063, 1988.
- Carli, B. and J.H. Park, "Simultaneous measurement of minor stratospheric constituents with emission far-infrared spectroscopy", J. Geophys. Res., 93, 3851–3865, 1988.
- Carlotti, M.; A. Barbis, B. Carli and S.Piccioli, "Global fit analysis for the retrieval of O3 distribution from far-IR limb-scanning measurements", Workshop on Tropospheric Ozone and Quadrennial Ozone Symposium, Abstracts, 257, 1988.
- Carlotti, M.; "Global-fit approach to the analysis of limb-scanning atmospheric measurements", Appl. Opt., 27, 3250-3254, 1988.
- Carlotti, M.; A. Barbis, and B. Carli, "Stratospheric ozone vertical distribution from far-infrared balloon spectra and statistical analysis of errors", J. Geophys. Res., 94, D13, 16365–16372, 1989.
- Cassam-Chena, Patrick; "Ab Initio Predictions for the Q-branch of the Methane Vibrational Ground State"; HITRAN Special Issue, J. Quant. Spectrosc. Radiat. Transfer, vol. 82, numbers 1-4, 2003.
- Chackerian, C.; Jr, S.W. Sharpe, and T.A. Blake, "Anhydrous Nitric Acid Integrated Absorption Cross Sections: 820 to 5300 cm⁻¹"; HITRAN Special Issue, J. Quant. Spectrosc. Radiat. Transfer, vol. 82, numbers 1-4, 2003.
- **Chakrabarty, D.K.;** G. Beig, and J.S. Sidhu, "Winter variabilities of O_3 and NO_2 at low latitude", Workshop on Tropospheric Ozone and Quadrennial Ozone Symposium, Abstracts, 164, 1988.
- Chance, K.V. and W.A.Traub, "Evidence for stratospheric hydrogen peroxide", J. Geophys. Res., 92, 3061, 1987.
- Chance, K.V.; D.G. Johnson, and W.A. Traub, "Measurement of stratospheric HOCl: Concentration profiles, including diurnal variation", J. Geophys. Res., 94, 11059–11069, 1989.
- Chance, K.V.; D.G. Johnson, W.A. Traub, and K.W. Jucks, "Measurement of the stratospheric hydrogen peroxide concentration profile using far infrared thermal emission spectroscopy", Geophys. Res. Lett., 18, 1003-1006, 1991.
- Chichery, A.; A. Barbe, M.T. Bourgeois, P. Demoulin, and G. Tyuterev, "The 3v3 bands of isotopic ozone 668 and 686", in Proceedings of "Atmospheric Spectroscopy Applications 1999", Reims, France, September 1-3, 1999, 147–150, 1999.
- Chipperfield, M.P.; M. Burton, W. Bell, C. Paton-Walsh, T. Blumenstock, M.T. Coffey, J.W. Hanningan, W.G. Mankin, B. Galle, J. Mellqvist, E. Mahieu, R. Zander, J. Notholt, B. Sen, and G.C. Toon, "On the use of HF as a reference for the comparison of stratospheric observations and models", J. Geophys. Res., 102, 12901–12919, 1997.
- **Coffey, M.T.**; W.G. Mankin, A. Goldman, C.P. Rinsland, G.A. Harvey, V. Malathy Devi, and G.M. Stokes, "Infrared measurements of atmospheric ethane (C_2H_6) from aircraft and groundbased solar absorption spectra in the 3000 cm⁻¹ region", Geophys. Res. Lett., **12**, 199–202, 1985.
- **Coffey, M.T.**; W.G. Mankin, and A. Goldman, "Stratospheric NO2 retrieval from solar absorption spectra in the ν_3 and $\nu_1 + \nu_3$ infrared bands, Appl. Opt., **25**, 2460–2462, 1986.
- Coffey, M.T. and W.G. Mankin, "Comparison of winter stratospheric chemistry in Arctic and Antarctic regions", Workshop on Tropospheric Ozone and Quadrennial Ozone Symposium, Abstracts, 75, 1988.
- Coffey, M.T. and W.G. Mankin, "Temporal and spatial distribution of stratospheric trace gases over Antarctica in August and September, 1987", Polar Ozone Workshop, Session IV, May 1988.
- Coffey, M.T.; W.G. Mankin, and A. Goldman, "Airborne measurements of stratospheric constituents over Antarctica in the Austral Spring, 1987", 2. "Halogen and nitrogen trace species", J. Geophys. Res., 94, 16597–16613, 1989.
- Coffey, M.T.; A. Goldman, J.W. Hannigan, W.G. Mankin, W.G. Schoenfeld, C.P. Rinsland, C. Bernardo, and D.W.T. Griffith, "Improved vibration-rotation (0-1) HBr line parameters for validating high resolution infrared atmospheric spectra measurements", J. Quant. Spectrosc. Radiat. Transfer, 60, 863–867, 1998.

- Coheur, P.-F.; C. Clerbaux, M. Carleer, S. Fally, D. Hurtmans, R. Colin, C. Hermans, A.C. Vandaele, B. Barret, M. De Mazière, and H. De Backer, "Retrieval of Atmospheric Water Vapor Columns from FT Visible Solar Absorption Spectra and Evaluation of Spectroscopic Databases"; HITRAN Special Issue, J. Quant. Spectrosc. Radiat. Transfer, 82, numbers 1-4, 2003.
- Connor, B.J.; J.W. Barrett, A. Parrish, P.M. Solomon, R.L. de Zafra, and M. Jaramillo, "Ozone over Mc-Murdo station, Antarctica, Austral spring 1986: altitude profiles for the middle and upper stratosphere", J. Geophys. Res., 92, 13221–13230, 1987.
- Connor, B.J.; R.L. de Zafra, P.M. Solomon, A. Parrish, J.W. Barrett, and M. Jaramillo, "Nitrous oxide in the tropical middle atmosphere observed by ground-based mm-wave spectrometry", Geophys. Res. Lett., 14, 1254–1257, 1987.
- Connor, B.J.; N.B. Jones, S.W. Wood, J.G. Keys, C.P. Rinsland, F.J. Murcray, "Retrieval of HCl and HNO3 profiles from ground-based FTIR data using SFIT2"; in: Bojkov, R.D.; Visconti, G. (eds). Atmospheric ozone; proceedings of the XVIII Quadrennial Ozone Symposium, L'Aquila, Italy, September 1996, vol. 2, 485–487. (Originally presented as a poster.) Parco Scientifico e Tecnologico d'Abruzzo, L'Aquila, 1998.
- Cox, A.N.; "Allen's Astrophysical Quantities", 4th ed., Springer-Verlag New York, 2000.
- **Dang-Nhu, M.** and A. Goldman, "Line parameters for C_2H_6 in the 3000 cm⁻¹ region", J. Quant. Spectrosc. Radiat. Transfer, **38**, 159–161, 1987.
- Dang-Nhu, M.; R. Zander, A. Goldman, and C.P. Rinsland, "Identification of magnetic dipole infrared transitions of the fundamental bend of oxygen", J. Mol. Spectrosc., 144, 366–373, 1990.
- David, S.J.; S.A. Beaton, M.H. Anderberg, and F.J. Murcray, "Determination of total ozone over Mauna Loa using very high resolution infrared solar spectra", Geophys. Res. Lett., 20, 2055–2058, 1993.
- David, S.J.; F.J. Murcray, A. Goldman, C.P. Rinsland, and D.G. Murcray, "The effect of the Mt. Pinatubo aerosol on the HNO₃ column over Mauna Loa, Hawaii", Geophys. Res. Lett., 21, 1003–1006, 1994.
- De Mazière, M.; C. Lippons, and C. Muller, "Observations of stratospheric HCl: 1975-1985", in Proc. 28th Liège International Astrophysical Colloquium, Our changing atmosphere, edited by P.J. Crutzen, J.-C. Gerared, and R. Zander, University of Liège, Belgium, pp. 61–68, 1989.
- De Mazière, M.; O. Hennen, M. van Roozendael, P.C. Simon, P. Demoulin, G. Roland, R. Zander, H. De Backer and R. Peter, "Towards improved evaluations of total ozone at the Jungfraujoch, using vertical profile estimations based on auxiliary data", Proceedings of the "XXVIII Quadrennial Ozone Symposium", L'Aquila-Italy, September 12-21, 1996, R. Bojkov editor, 1997.
- De Mazière, M.; M. Van Roozendael, C. Herman, P.C. Simon, P. Demoulin, G. Roland, and R. Zander, "Quantitative evaluation of post-Pinatubo NO2 reduction and recovery, based on 10 years of FTIR and UV-visible spectroscopic measurements at the Jungfraujoch", J. Geophys. Res., 103, 10849-10858, 1998.
- De Mazière, M.; O. Hennen, M. van Roozendael, P. Demoulin, and H. De Backer, "Daily ozone vertical profile model built on geophysical grounds, for column retrieval from atmospheric high-resolution infrared spectra", J. Geophys. Res., 104, 23855-23869, 1999.
- De Mazière, M.; and B. Barret, "Retrieval of tropospheric information from ground-based FTIR observations, supported by synergistic exploitation of various ground-based and space-borne measurement techniques and data", in Annual Report 2001- TROPOSAT: The Use and Usability of Satellite Data for Tropospheric Research, EUROTRAC-2 International Scientific Secretariat (ISS), GSF-National Research Centre for Environment and Health, Munich, Germany, 146-150, May 2002.
- De Mazière, M.; B. Barret, A.-C. Vandaele, E. Neefs, F. Scolas, T. Egerickx, C. Hermans, P.-F. Coheur, S. Fally, M. Carleer, and J. Leveau; "Preliminary results from the FTIR campaign at Ile de la Réunion in September - October 2002", oral presentation at the NDSC IRWG meeting in Bremen, June 18-20, 2003.
- De Mazière, M.; B. Barret, C. Hermans, E. Neefs, F. Scolas, A.-C. Vandaele, M. Carleer, S. Fally, P.-F. Coheur, J. Leveau, and J. Metzger, "Ground-based FTIR atmospheric observations campaign at Ile de la Reunion"; Poster presented at the Workshop on "Tropical Meteorology and Chemistry", Wessling, Pfarrstadl, Germany, 14-16 May, 2003.
- **Delbouille, L.;** G. Roland, J. Brault, and L. Testerman, "Photometric Atlas of the Solar Spectrum from 1,850 to 10,000 cm⁻¹", Kitt Peak National Observatory, Tucson, AZ, 1981.
- **Delbouille, L.** and G. Roland, "*High-resolution solar and atmospheric spectroscopy from the Jungfraujoch high-altitude station*", Optical Engineering, **34**, 2736–2739, 1995.

- Demoulin, P.; C.B. Farmer, C.P. Rinsland, and R. Zander, "Determination of absolute strengths of N2 quadrupole lines from high resolution ground based IR solar observations", J. Geophys. Res., 96, 13003– 13008, 1991.
- **Demoulin, P.;** C.B. Farmer, C.P. Rinsland, and R. Zander, "Determination of absolute strengths of N_2 quadrupole lines from high resolution ground based IR solar observations", J. Geophys. Res., **96**, 13003–13008, 1991.
- Demoulin, P.; B. Schmid, G. Roland, and C. Servais, "Vertical column abundance and profile retrievals of water vapor above the Jungfraujoch", in Proceedings of "Atmospheric Spectroscopy Applications, ASA 96", Reims, September 4-6, 1996, 131–134, 1996.
- Demoulin, P.; E. Mahieu, G. Roland, L. Delbouille, C. Servais, M. De Mazière and M. Van Roozendael, "The Current Budget of NOy above the Jungfraujoch as derived from IR Solar Observations", in Proceedings of the "Fourth EuropeanSymposium on Polar Stratospheric Ozone Research", Schliersee, September 22–26, 1997.
- Demoulin, P.; Université de Liège, e-mail: demoulin@astro.ulg.ac.be, priv. comm., 2001.
- Denmead, O.T.; R. Leuning, D.W.T. Griffith, L.A. Harper, J.R. Freney, I.M. Jamie, and F. Turatti, "Verifying current estimates of non-CO2 greenhouse gas emissions from animals, landfills and pastures with direct measurements", CSIRO Land and Water, Canberra, 1998.
- Devi, V.M.; D.C. Benner, M.A.H. Smith, C.P. Rinsland, S.W. Sharpe, and R.L. Sams; "A Multispectrum Analysis of the 1 Band of H12C14N: I. Intensities, Self-broadening and Self-shift Coefficients"; HITRAN Special Issue, J. Quant. Spectrosc. Radiat. Transfer, 82, numbers 1-4, 2003.
- Dinelli, B.M.; B. Carli, M. Carlotti, and J.Park, "Stratospheric distribution of hydroxyl radical from far-IR emission spectra", Workshop on Tropospheric Ozone and Quadrennial Ozone Symposium, Abstracts, 156, 1988.
- Ehhalt, D.H.; U. Schmidt, R. Zander, Ph. Demoulin, and C.P. Rinsland, "Seasonal cycle and secular trend of the total and tropospheric column abundance of ethane above the Jungfraujoch", J. Geophys. Res., 96, 4985–4994, 1991.
- Esler, M.B.; D.W.T. Griffith, S.R. Wilson, and L.P. Steele, "Carbon monoxide, nitrous oxide, methane and carbon dioxide - trace gas analysis by FTIR spectroscopy", in Baseline Atmospheric Program Australia 1994-1995, edited by R.J. Francey, A.L. Dick, and N. Derek, Bureau of Meteorology, CSIRO Division of Atmospheric Research, 1996.
- Esler, M.B.; S.R. Wilson, D.W.T. Griffith, and L.P. Steele, "Baseline trace gas monitoring using Fourier Transform Infrared (FTIR) spectroscopy", in Baseline 96, edited by R.J. Francey, CSIRO Bureau of Meteorology, Melbourne, 1998.
- Fally, S.; P.-F. Coheur, M. Carleer, C. Clerbaux, R. Colin, A. Jenouvrier, M.-F. Mérienne, C. Hermans, and A.C. Vandaele, "Water Vapor Line Broadening and Shifting by Air in the 26000 - 13000 cm⁻¹ Region"; HITRAN Special Issue, J. Quant. Spectrosc. Radiat. Transfer, 82, numbers 1-4, 2003.
- Farmer, C.B.; G.C. Toon, P.W. Schaper, J.F. Blavier, and L.L. Lowes, "Stratospheric trace gases in the spring 1986 Antarctic atmosphere", Nature, 329, 126–130, 1987.
- Farmer, C.B. and R.H. Norton, "Atlas of the Infrared Spectrum of the Sun and the Earth Atmosphere from Space", Volume I, NASA Reference Publication 1224, 1989.
- Farmer, C.B. and R.H. Norton; "A High-Resolution Atlas of the Infrared Spectrum of the Sun and Earth Atmosphere from Space". NASA Reference Pub. 1224, in two volumes (volume 3, see Geller et al., 1992), 1216 pp., 1989.
- Farmer, C.B.; B. Carli, A. Bonetti, M. Carlotti, B.M. Dinelli, H. Fast, W.F.J. Evans, N. Louisnard, C. Alamichel, W. Mankin, M. Coffey, I.G. Nolt, D.G. Murcray, A. Goldman, G.M. Stokes, D.U. Johnson, W.A. Traub, K.V. Chance, G. Roland, and L. Delbouille, *Balloon Intercomparison campaigns: results of remote sensing measurements of HCl*", J. Atmos. Chem., **10**, 237–272, 1990.
- Farmer, C.B.; L. Delbouille, G. Roland, C. Servais, "The Solar Spectrum between 16 and 40 microns", Publication of the San Juan Capistrano Research Institute (San Juan Capistrano, California 92675): SJI TECH. REPORT 94-2., 83 pages, 1994.
- Farmer, C.B.; "The ATMOS Solar Atlas", Infrared Solar Physics, 511–521, 1994.
- Fast, H. and W.F.J. Evans, "Stratospheric profiles of HCl and CH₄ at 32° N obtained on project stratoprobe from 1978 to 1985", Adv. Space. Res., 7, 127–131, 1987.

- Fast, H.; R.L. Mittermeier, and Y. Makino, "Arctic Trace Gas Measurements in the Winter of 1996/97 with the SOlar Interferometer at Eureka, Canada", Atmospheric Ozone, Proc. Quad. Ozone Symp., Sapporo, Japan, R.D. Bojkov and K. Shibasaki eds., 367–368, 2000.
- Fischer, J.; R.R. Gamache, A. Goldman, L.S. Rothman, and A. Perrin, "Total Internal Partition Sums for Molecular Species in the 2000 Edition of the HITRAN Database"; HITRAN Special Issue, J. Quant. Spectrosc. Radiat. Transfer, 82, numbers 1-4, 2003.
- Flaud, J.-M.; C. Camy-Peyret, V.M. Devi, C. Rinsland, and M.A.H. Smith, "The ν_1 and ν_3 Volumes of ${}^{16}O^{18}O^{16}O$: Line positions and intensities", J. Mol. Spectrosc., **118**, 334–344, 1986.
- Flaud, J.-M.; C. Camy-Peyret, J.W. Brault, C.P. Rinsland, and D. Cariolle, "Nighttime and daytime variation of atmospheric NO₂ from groundbased infrared measurements, Geophys. Res. Lett., 15, 261–264, 1988.
- Galle B.; Mellqvist J., D.W. Arlander, I. Floisand, M.P. Chipperfield and A.M. Lee. "Ground Based FTIR Measurements of Stratospheric Trace Species from Harestua, Norway during SESAME and Comparison with a 3-D Model", J. Atmos. Chem., 32, 147–164, 1999.
- Galle, Bo; "Development and Application of Methods based on DOAS and FTIR Absorption Spectroscopy for Atmospheric Research", PhD thesis, Chalmeers University, School of Physics and Engineering Physics, Department of Experimental Physics, Gothenburg, Sweden, 1999.
- Galle, B.; J. Mellqvist, J. Samuelsson, S. Magnusson, M. Van Roozendael, C. Fayt, C. Hermans, F. Hendrick, M.P. Chipperfield and A. Bjerke, "FTIR and UV-Visible Measurements of Stratospheric Trace Species at Harestua, Norway during THESEO and Comparison with a 3-D Model", in: Proceedings of the 5th European Workshop on Stratospheric Ozone, Saint Jean de Luz, France, 27 Sept.-1 Oct. 1999. Air Pollution Research Report 73, European Commission - DG XII, Brussels, 2000.
- Galle B.; C. Oppenheimer, A. Geyer, A. McGonigle, and M. Edmonds, "A miniaturised ultraviolet spectrometer for remote sensing of SO2 fluxes: a new tool for volcano surveillance", J. Volcanology, accepted, 2002.
- Gallery, W.O.; F.X. Kneizys, and S.A. Clough, "Air mass computer program for atmospheric transmittance/radiance calculation: FSCATM", US Air Force Geophys. Lab., Environmental Research Paper No.828, AFGL-TR-83-0065, 145, 1983.
- Gamache R.R.; and A. Goldman, "Einstein-A Coefficient, Integrated Band Intensity, and Population Factors Application to the a¹Dg - X³Sg⁻ (0,0)O2 Band", J. Quant. Spectrosc. Radiat. Transfer, 69, 389–401, 2001.
- Geller, M.; "A high-resolution atlas of the infrared spectrum of the sun and the earth atmosphere from space
 Volume III: Key to identification of solar features", (volumes 1+2, see Farmer and Norton, 1989), JPL CalTech, NASA ref. publication 1224, Washington D.C., 1992.
- Gillis, J.R.; A. Goldman, G. Stark, and C.P. Rinsland, "Line parameters for the A²S X²P bands of OH," J. Quant. Spectrosc. Radiat. Transfer, 68, 225–230, 2001.
- Goldman, A.; F.J. Murcray, R.D. Blatherwick, and D.G. Murcray, "Quantification of HCl from highresolution, ground-based, infrared solar spectra in the 3000cm⁻¹ region", J. Quant. Sepctrosc. Radiat. Transfer, 36, 385–387, 1986.
- Goldman, A.; F.J. Murcray, R.D. Blatherwick, and D.G. Murcray, "Quantification of HCl from highresolution, groundbased, infrared solar spectra in the 3000 cm-1 region", J. Quant. Spectrosc. Radiat. Transfer, 36, 385–387, 1986.
- Goldman, A.; F.J. Murcray, F.H. Murcray, and D.G. Murcray, "Quantification of HCl from highresolution infrared solar spectra obtained at the south pole in December 1986", Geophys. Res. Lett., 14, 622–623, 1987.
- Goldman, A.; F.J. Murcray, F.H. Murcray, D.G. Murcray, and C.P. Rinsland, "Measurements of several atmospheric gases above the south pole in December 1986 from highresolution 34 micron solar spectra", J. Geophys. Res., 93, 7069–7074, 1988.
- Goldman, A.; F.J. Murcray, D.G. Murcray, J.J. Kosters, C.P. Rinsland, J.-M. Flaud, C. Camy-Peyret, and A. Barbe, "Isotopic abundances of stratospheric ozone from ballone-borne high-resolution infrared solar spectra", J. Geophys. Res., 94, 8467–8473, 1989.
- Goldman, A.; F.J. Murcray, R.D. Blatherwick, J.J. Kosters, F.H. Murcray, D.G. Murcray, and C.P. Rinsland, "New spectral features of stratospheric trace gases identified from high resolution infrared balloonborne and laboratory spectra", J. Geophys. Res., 94, 14945–19955, 1989.

- Goldman, A.; F.J. Murcray, R.D. Blatherwick, J.J. Kosters, F.H. Murcray, D.G. Murcray, and C.P. Rinsland, "New spectral features of stratospheric trace gases identified from high resolution infrared balloonborne and laboratory spectra", J. Geophys. Res., 94, 14945–19955, 1989.
- Goldman, A.; F.J. Murcray, C.P. Rinsland, R.D. Blatherwick, S.J. David, F.H. Murcray, and D.G. Murcray, "Mt. Pinatubo SO₂ column measurements from Mauna Loa", Geophys. Res. Lett., 19, 183–186, 1992.
- Goldman, A.; F.J. Murcray, R.D. Blatherwick, J.J. Kosters, D.G. Murcray, C.P. Rinsland, J.-M. Flaud, and C. Camy-Peyret, "Stratospheric HNO₃ measurements from 0.002 cm⁻¹ resolution solar occultation spectra and improved line parameters in the 5.8 μm region", J. Geophys. Res.-A, 97, (D2), 2561–2567, 20 Feb 1992.
- Goldman, A.; R.D. Blatherwick, F. J. Murcray, and D. G. Murcray, "University of Denver infrared spectral atlases", Applied Optics, 35, No. 16, 2821–2827, 1996.
- Goldman, A.; W.G. Schönfeld, D. Groovitch, C. Chackerian, H. Dothe, F. Mélen, M. C. Abrams, and J. E. A. Selby, "Updated line parameters for OH X2II-X2II (u,u) transitions", Journal of Spectroscopy and Radiative Transfer, 59, No. 3-5, 453–469, 1998.
- Goldman, A.; C. Paton-Walsh, W. Bell, G.C. Toon, B. Sen, J.R. Blavier, M.T. Coffey, J.W. Hannigan, and W.G. Mankin, "Network for the Detection of Stratospheric Change (NDSC) FTIR Intercomparison at Table Mountain Facility, November 1996", J. Geophys. Res., 104, 30481–30503, 1999.
- Goldman, A.; M.T. Coffey, T.M. Stephen, C.P. Rinsland, W.G. Mankin, and J.W. Hannigan, "Isotopic OCS in the Troposphere and Lower Stratosphere Determined from High Resolution Infrared Solar Absorption Spectra", J. Quant. Spectrosc. Radiat. Transfer, 67, 447–456, 2000.
- Goldman, A.; R.R. Gamache, A. Perrin, J.-M. Flaud, C.P. Rinsland, and L.S. Rothman, "HITRAN Partition Functions and Weighted Transition-Moments Squared", J. Quant. Spectrosc. Radiat. Transfer, 66, 455–486, 2000.
- Goldman, A.; C.P. Rinsland, A. Perrin, J.-M. Flaud, A. Barbe, C. Camy-Peyret, M.T. Coffey, W.G. Mankin, J.W. Hannigan, T.M. Stephen, V. Malathy Devi, M.A.H. Smith, "Weak Ozone Isotopic Absorption in the 5 µm Region from High Resolution FTIR Solar Spectra", J. Quant. Spectrosc. Radiat. Transfer, 74, 133–138, 2002.
- Goldman, A.; M.T. Coffey, J.W. Hannigan, W.G. Mankin, K.V. Chance, and C.P. Rinsland, "HBr and HI Line Parameters Update for Atmospheric Spectroscopy Databases", HITRAN Special Issue, J. Quant. Spectrosc. Radiat. Transfer, 82, numbers 1-4, 2003.
- Goldman, A.; T.M. Stephen, L.S. Rothman, L.P. Giver, J.-Y. Mandin, R.R. Gamache, C.P. Rinsland, and F.J. Murcray "The 1-µm CO2 Bands and the O2(0-1) X/g - a/g and (1-0) X/g - b/g Bands in the Earth Atmosphere," HITRAN Special Issue, J. Quant. Spectrosc. Radiat. Transfer, 82, numbers 1-4, 2003.
- **Goorvitch, D.**; "Infrared CO line list for the $X^1\Sigma^+$ state", The Astrophysical Journal Supplement Series, **95**, 535–552, 1994.
- Goutail, F. and J.P. Pommereau, "O4 and H2O atmospheric absorption measurements in the visible during the GLOBUS NOx campaign", Workshop on Tropospheric Ozone and Quadrennial Ozone Symposium, Abstracts, 161, 1988.
- Gray, D.F.; "The observation and analysis of stellar photospheres", Cambridge Univ. Press, 1992.
- Griffith, D.W.T.; "Synthetic calibration and quantitative analysis of gas phase infrared spectra", Appl. Spectrosc., 50, 59–70, 1996.
- Griffith, D.W.T.; N.B. Jones, and W.A. Matthews, "Interhemispheric ratio and annual cycle of carbonyl sulfide (OCS) total column from ground based solar FTIR spectra", J. Geophys. Res., 103 (D7), 8447– 8454, 1998.
- Griffith, D.W.T.; G.C. Toon, B. Sen, and J.-F. Blavier, "Vertical profiles of nitrous oxide isotopomer fractionation measured in the stratosphere", Geophysical Research Letters, 27(16), 2485–2488, 2000.
- Griffith, D.W.T.; N.B. Jones, B. McNamara, C. Paton-Walsh, W. Bell, and C. Bernardo, "Intercomparison of ground-based solar FTIR measurements of atmospheric trace gases at Lauder", New Zealand, J. Ocean. Atmos. Tech., 20(8), 1138–1153, 2003.
- Gunson, M.R.; C.B. Farmer, R.H. Norton, R. Zander, C.P. Rinsland, J.H. Shaw, and B.-C. Gao, "Measurements of CH₄, N₂O, CO, H₂O, and O₃ in the middle atmosphere by the atmospheric trace molecule spectroscopy experiment on Spacelab 3", J. Geophys. Res., 95, 13867–13882, 1990.

- Gunson, M.R.; M.M. Abbas, M.C. Abrams, M. Allen, L.R. Brown, T.L. Brown, A.Y. Chang, A. Goldman, F.W. Irion, L.L. Lowes, E. Mahieu, G.L. Manney, H.A. Michelsen, M.J. Newchurch, C.P. Rinsland, R.J. Salawitch, G.P. Stiller, G.C. Toon, Y. L. Yung, and R. Zander, "The Atmospheric Trace Molecule Spectroscopy (ATMOS) experiment : deployment on the ATLAS Space Shuttle missions", Geophys. Res. Lett., 23, 2333–2336, 1996.
- Guo, J.; M.M. Abbas, and I.G. Nolt, "Stratospheric H₂¹⁸O distribution from far infrared observations", Geophys. Res. Lett., 16, 1989.
- Hamdouni, A.; A. Barbe, P. Demoulin and R. Zander, "Retrieval of ozone vertical column amounts from ground-based high resolution infrared solar spectra", J. Quant. Spectrosc. Radiat. Transfer, 57, 11–22, 1997.
- Hannigan, J.W.; M.T. Coffey, W.G. Mankin, A. Goldman, "Column Observations of HNO3, N2O, HF, HCl, O3 at Sondre Stromfjord, Greenland During Winter 1994-'95", J. Atmos. Chem., 30, 103–118, 1998.
- Hase, F., T. Blumenstock, C. Paton-Walsh, "Analysis of the instrumental line shape of high-resolution Fourier transform IR spectrometers with gas cell measurements and new retrieval software", Appl. Opt., 38, 3417–3422, 1999.
- Hase, F. and M. Höpfner, "Atmospheric raypath modelling for radiative transfer algorithms", Appl. Opt., 38, 3129–3133, 1999.
- Hase, F.: "Inversion von Spurengasprofilen aus hochaufgelösten bodengebundenen FTIR-Messungen in Absorption", Dissertation, FZK Report No. 6512, Forschungszentrum Karlsruhe, Germany, 2000.
- Hase, F.; T. Blumenstock, H. Fischer, M. Höpfner, P. Thomas, A. Meier, A. Steen, Y. Kondo, "Profiles of O3, HCl, and HF as retrieved from ground-based FTIR spectra recorded at Kiruna (Sweden) during winter 1997/98", Proceedings of the Fifth European Workshop on Polar Stratospheric Ozone, St. Jean Du Luz 1999, European Commission - Air pollution research report 73, 244–247, 2000.
- Hurst, D.F.; D.W.T. Griffith, and G.D. Cook, "Trace gas emissions from biomass burning in tropical Australian savannas", Journal of Geophysical Research, 99 (D8), 16441–16456, 1994.
- Hurst, D.F.; D.W.T. Griffith, and G.D. Cook, "Trace gas emissions from biomass burning in Australia, in Biomass Burning and Global Change, 2, Biomass Burning in South America, Southeast Asia, and Temperate and Boreal Ecosystems, and the Kuwait Oil Fires", edited by J.S. Levine, pp. 377, MIT Press, Cambridge, MA, 1996.
- Höpfner, M., T. Blumenstock, F. Hase, A. Zimmermann, H. Flentje, S. Flueglistaler, "Mountain polar stratospheric cloud measurement by ground-based FTIR solar absorption spectroscopy", Geophys. Res. Lett., 28, 2189–2192, 2001.
- Inngold, T.; B. Schmid, C. Mätzler, P. Demoulin, and N. Kämpfer, "Modeled and empirical approaches for retrieving columnar water vapor from solar transmittance measurements in the 0.72, 0.82 and 0.94 μm absorption bands", J. Geophys. Res., 105, 24327–24343, 2000.
- Irion, F.W.; M. Brown, G.C. Toon, and M.R. Gunson, "Increase in atmospheric CHF₂Cl (HCFC-22) over southern California from 1985-1990", Geophys. Res. Lett., 21, 1723–1726, 1994.
- Irion, F.W.; E.J. Moyer, M.R. Gunson, C.P. Rinsland, H.A. Michelsen, R.J. Salawitch, Y. L. Yung, A.Y. Chang, M. J. Newchurch, M.M. Abbas, M.C. Abrams, and R. Zander, "Stratospheric observations of CH3D and HDO from ATMOS infrared solar spectra: enrichments of deuterium in methane and implications for HD", Geophys. Res. Lett., 23, 2381–2384, 1996.
- Irion, F.W.; M.R. Gunson, C.P. Rinsland, Y.L. Yung, M.C. Abrams, A.Y. Chang, and A. Goldman, "Heavy ozone enrichment from ATMOS infrared solar spectra", Geophys. Res. Lett., 23, 2377–2380, 1996.
- Irion, F.W.; M.R. Gunson, G.C. Toon, L.R. Brown, A.Y. Chang, A. Eldering, E. Mahieu, G.L. Manney, H.A. Michelsen, E.J. Moyer, M.J. Newchurch, G.B. Osterman, C.P. Rinsland, R.J. Salawitch, B. Sen, Y. L. Yung, and R. Zander, "The Atmospheric Trace Molecule Spectroscopy Experiment (ATMOS) version 3 data retrievals", Appl. Opt., 41 (33), 6968–6979, 2002.
- Jacquemart, D.; J.-Y. Mandin, V. Dana, C. Claveau, J. Vander Auwera, M. Herman, L.S. Rothman, L. Régalia-Jarlot, and A. Barbe, "The IR Acetylene Spectrum in HITRAN: Update and New Results", HITRAN Special Issue, J. Quant. Spectrosc. Radiat. Transfer, 82, numbers 1-4, 2003.
- Jacquinet-Husson, N.; E. Arié, A. Barbe, L.R. Brown, B. Bonnet, C. Camy-Peyret, J.P. Champion, A. Chédin, A. Chursin, C. Clerbaux, G. Duxbury, J.-M. Flaud, N. Fourrié, A. Fayt, G. Graner, R.R. Gamache, A. Goldman, Vl. Golovko, G. Guelachvilli, J.M. Hartmann, J.C. Hillico, G. Lefèvre, O.V.

Naumenko, V. Nemtchinov, D.A. Newnham, A. Nikitin, J. Orphal, A. Perrin, D.C. Reuter, L. Rosenmann, L.S. Rothman, N.A. Scott, J.E. Selby, L.N. Sinitsa, J.M. Sirota, A. Smith, K. Smith, R.H. Tipping, Vl.G. Tyuterev, S. Urban, P. Varanasi, and M. Weber, "The 1997 Spectroscopic GEISA Databank", J. Quant. Spectrosc. Radiat. Transfer, 62, 205–254, 1999.

- Jaramillo, M.; R.L. de Zafra, J.W. Barrett, A. Parrish, and P.M. Solomon, "MM-wave observations of stratospheric HCN at tropical latitudes", Geophys. Res. Lett., 15, 265–268, 1988.
- Jaramillo, M.; R.L. de Zafra, J. Barrett, L.K. Emmons, P.M. Solomon, and A. Parrish, "A measured mixing ratio profile for HCN over McMurdo station during the Antarctic spring", Workshop on Tropospheric Ozone and Quadrennial Ozone Symposium, Abstracts, 69, 1988.
- Jaramillo, M.; R.L. de Zafra, J. Barrett, and L.K. Emmons, "Measurements of hydrogen cyanide as a tracer at stratospheric transport", Antarctic, J., xxiii, 158–159, 1988.
- Johnston, P. V.; R.L. McKenzie; J.G. Keys, W.A. Matthews, "Observations of depleted stratospheric NO2 following the Pinatubo volcanic eruption", Geophys. Res. Lett., 19, 211–213, 1992.
- Jones, N.B.; M. Koike, W.A. Matthews, and B.M. McNamara, "Southern hemisphere mid-latitude seasonal cycle in total column nitric acid", Geophys. Res. Lett., 21, 593–596, 1994.
- Jones, N.B.; C.P. Rinsland, J. B. Liley, and J.M. Rosen, "Correlation of Aerosol and Carbon Monoxide at 45°S, Evidence of Biomass burning Emissions", Geophys. Res. Lett., 28, 709–712, 2001.
- Karcher, F.; M. Amodei, G. Armand, C. Besson, B. Dufour, G. Froment, and J.P. Meyer, "Simultaneous measurements of stratospheric HNO₃, NO₂, HCl, O₃, N₂O, CH₄, H₂O and CO from the STRATOZ3 flights", Workshop on Tropospheric Ozone and Quadrennial Ozone Symposium, Abstracts, 165, 1988.
- Kaye, J.A.; A.R. Douglas, C.H. Jackman, R.S. Stolarski, R. Zander, and G. Roland, "Two-dimensional model calculations of fluorine-containing reservoir species in the stratosphere", J. Geophys. Res., 96, 12865–12881, 1991.
- Kerr, J.B.; and W.F.J. Evans, "Brewer spectrophotometer measurements in the Canadian Arctic", Polar Ozone Workshop, Session VII, May 1988.
- Kerr, J.B.; "Ground based measurements of nitrogen dioxide using the brewer spectrophotometer", Workshop on Tropospheric Ozone and Quadrennial Ozone Symposium, Abstracts, 163, 1988.
- Kerridge, B.J. and H.K. Roscoe, "Balloon-borne IR emission measurements of stratospheric nitrigen oxides and aerosol", Workshop on Tropospheric Ozone and Quadrennial Ozone Symposium, Abstracts, 152, 1988.
- Keys, J.G.; and P.V. Johnston, "Stratospheric column NO₂ measurements from three Antarctic sites", Polar Ozone Workshop, Session IV, May 1988.
- Keys, J.G. and B.G. Gardiner, "NO2 overnight decay and layer height at Halley Bay, Antarctica", Geophys. Res. Lett., 18, 665–668, 1991.
- Keys, J.G.; P.V. Johnston, R.D. Blatherwick, and F.J. Murcray, "Evidence of heterogeneous reactions involving nitrogen compounds in the Antarctic stratosphere", Nature, 361, 49–51, 1993.
- Keys, J.G.; S.W. Wood, X. Liu, F.J. Murcray, and R.L. de Zafra, "Partitioning of stratospheric chlorine during Antarctic spring as seen from ground-based infrared solar absorption and microwave observations", in Proceedings of the XVIII Quadrennial Ozone Symposium, L'Aquila, Italy, L'Aquila, Italy, accepted 1997.
- Keys, J.G.; S.W. Wood, N.B. Jones, and F.J. Murcray, "Spectral Measurements of HCl in the plume of the Antarctic volcano Mount Erebus", Geophys. Res. Lett., 25, 2421–2424, 1998.
- Kilston, S.; "N-type carbon stars and the 3-alpha process", Pub. Astron. Soc. Pacific, 87, 189–206, 1975.
- Kleiner, I.; G. Tarrago, C. Cottaz, L. Sagui, L.R. Brown, R.L. Poynter, H.M. Pickett, P. Chen, J.C. Pearson, R.L. Sams, G.A. Blake, S. Matsuura, V. Nemtchinov, P. Varanasi, L. Fusina, and G. DiLonardo; "NH3 and PH3 Line Parameters: 2000 HITRAN Update and New Results", HITRAN Special Issue, J. Quant. Spectrosc. Radiat. Transfer, 82, numbers 1-4, 2003.
- Koike, M.; N.B. Jones, W.A. Matthews, P.V. Johnston, R.L. McKenzie, D. Kinnison, and J. Rodriguez, "Impact of Pinatubo aerosols on the partitioning between NO₂ and HNO₃, Geophys. Res. Lett., 21, 597–600, 1994.
- Kondo, U.; et al, "NOy correlation with N2O and CH4 in the midlatitude stratosphere", Geophys. Res. Lett., 23, 2369–2372, 1996.
- Kreher, K.; J.G. Keys, P.V. Johnston, U. Platt, and X. Liu, "Ground-based measurements of OClO and HCl in austral spring 1993 at Arrival Heights, Antarctica", Geophys. Res. Lett., 23, 1545–1548, 1996.

- Kreher, K.; P.V. Johnston, S.W. Wood, B. Nardi, and U. Platt, "Ground-based measurements of tropospheric and stratospheric BrO at Arrival Heights (78°S), Antarctica", Geophys. Res. Lett., 24, 3021– 3024, 1997.
- Kreher, K.; P.V. Johnston, S.W. Wood, and J.G. Keys, "Ground-based observations of OClO, BrO and NO2 during 1995 at Arrival Heights (77.8°S) Antarctica", in Proceedings of the XVIII Quadrennial Ozone Symposium, L'Aquila, Italy, L'Aquila, Italy, accepted 1997.
- Kreher, K.; T. Wagner, U. Friess, U. Platt, S.W. Wood, P.V. Johnston, and B. Nardi, "Observation of enhanced tropospheric bromine oxide in the Antarctic", in International Symposium on Atmospheric Chemistry and Future Global Environment, Nagoya, Japan, 78–81, 1997.
- Kunde, V.G.; J.C. Brasunas, B.J. Conrath, R.A. Hanel, J.R. Herman, D.E. Jennings, W.C. Maguire, D.W. Walser, J.N. Annen, M.J. Silverstein, M.M. Abbas, L.H. Herath, H.L. Buijs, J.N. Berube, and J. McKinnon, "Infrared spectroscopy of the lower stratosphere with a balloonborne cryogenic Fourier spectrometer", Appl. Opt., 26, 545–553, 1987.
- Kunde, V.G.; J.C. Brasunas, W.C. Maquire, J.R. Herman, S.T. Massie, M.M. Abbas, L.W. Herath, and W.A. Shaffer, "Measurement of nighttime stratospheric N₂O₅ from infrared emission spectra", Geophys. Res. Lett., 15, 1177–1180, 1988.
- Kurucz, Robert L.; "Electronic version of the ATMOS solar spectra reported by Farmer and Norton, 1989", reduced from 20 tapes and cleared from instrumental and background features; http://kurucz. harvard.edu/sun/ATMOS/, 2002.
- Kurylo, M.J. and R. Zander, "The NDSC-Its status after ten years of operation", in Proceedings of the "International Quadrennial Ozone Symposium", Sapporo, Japan, July 3-8, 2000, 167–168, 2000.
- Kwabia Tchana, F.; J. Orphal, I. Kleiner, B. Redlich, D. Scheffler, R. Mbiake, and O. Bouba, "The n2 band of BrNO2 around 792 cm-1 (12.7 mm)", J. Molec. Spectrosc., 216, 292–296, 2002.
- Leuning, R.; O.T. Denmead, D.W.T. Griffith, I.M. Jamie, P. Issacs, J. Hacker, C.P. Meyer, I.E. Galbally, H.A. Cleugh, M.R. Raupach, and M.B. Esler, "Assessing biogenic sources and sinks of greenhouse gases at three interlinking scales", CSIRO Land & Water, Canberra, 1997.
- Li, Q.; D.J. Jacob, I. Bey, R.M. Yantosca, Y. Zhao, Y. Kondo, J. Notholt, "Atmospheric Hydrogen Cyanide (HCN): Biomass burning source, ocean sink?" Geophys. Res. Lett., 27, 357–360, 2000.
- Liley, J.B.; J.M. Rosen, N.T. Kjome, N.B. Jones, and C.P. Rinsland, "Springtime Enhancement of upper Tropospheric Aerosol at 45°S", Geophys. Res. Lett., 28, 1495–1498, 2001.
- Liu, X.; R.D. Blatherwick, F.J. Murcray, J.G. Keys, and S. Solomon, "Measurements and model calculations of HCl column amounts and related parameters over McMurdo during the austral spring in 1989", J. Geophys. Res., 97, 20795–20804, 1992.
- Liu, X.; and F.J. Murcary, "N2O Vertical Profiles Retrieved From Ground-based Solar Absorption Taken at McMurdo Station During Austral Spring of 1989", Optical Remote Sensing of the Atmosphere, 6th Topical Meeting, Salt Lake City, Feb 6-10, 1995.
- Liu, X.; and F.J. Murcary, "Comparison Between the HALOE Measured HF and HCl VMR Profiles and the Profiles Obtained From Ground-based Very High Resolution FTIR Solar Spectra", J. Geophys. Res., 101, 10175–10181, 1996.
- Liu, X.; R. Blatherwick and F. J Murcray, "Determination of a FTIR Instrument Line Shape Function from O3 3V3 lines Using Ozone Sondes for Improved Retrieval of HCl Altitude Profiles", supplement to Eos, 77(46), F121(A42A-3), 1996.
- Liu, X.; et al., "Comparison of HF and HCl vertical profiles from ground-based high-resolution infrared solar spectra with Halogen Occultation Experiment observations", J. Geophys. Res., 101, 10175–10181, 1996.
- Livingston, W.; and L. Wallace "An Atlas of the Solar Spectrum in the Infrared from 1850 to 9000 cm⁻¹ (1.1 to 5.4 microns)" (N.S.O. Technical Report #91-001, July 1991.
- Mélen, F.; E. Mahieu, R. Zander, C.P. Rinsland, P. Demoulin, G. Roland, L. Delbouille, and C. Servais, "Vertical column abundances of COF2 above the Jungfraujoch station derived from ground-based infrared solar observations", J. Atmos. Chem., 29, 119–134, 1998.
- Mélen, F.; N. Grevesse, L. Delbouille, G. Roland, Ch. Servais, A. J. Sauval, and C. B Farmer, "A new analysis of the OH radical spectrum from solar infrared observations", in Proceedings of the Workshop on "Laboratory and Astronomical High Resolution Spectra", Brussels, August 29 - September 2, 1994, A.J. Sauval, R. Blomme, and N. Grevesse Eds., ASP Conference Series, 81, 320–321, 1995.

- Mérienne, M.-F.; A. Jenouvrier, C. Hermans, A.C. Vandaele, M. Carleer, C. Clerbaux, P.-F. Coheur, R. Colin, S. Fally, and M. Bach, "Water Vapor Line Parameters in the 13000 9250 cm⁻¹ Region", HITRAN Special Issue, J. Quant. Spectrosc. Radiat. Transfer, 82, numbers 1-4, 2003.
- Mahieu, E.; R. Zander, and P. Demoulin, "Infrared remote monitoring of the vertical column abundance of CO above the Jungfraujoch between 1984 and 1993", Report (No. 98) of the WMO meeting of experts on global carbon monoxide measurements, Boulder, USA, February 7-11, 1994, WMO/TD-NO. 645, 52–55, 1994.
- Mahieu, E.; C.P. Rinsland, R. Zander, P. Demoulin, L. Delbouille, and G. Roland, "Vertical Column Abundances of HCN deduced from Ground-Based Infrared Solar Spectra: Long-Term Trend and Variability", J. Atmos. Chem., 20, 299–310, 1995.
- Mahieu, E.; R. Zander, M.R. Gunson, G.C. Toon, C.P. Rinsland, and P. Demoulin, "Evaluation of the lifetime of SF6 in the Earth's atmosphere, based on ATMOS and Jungfraujoch IR solar observations, in Proceedings of "Atmospheric Spectroscopy Applications, ASA 96", Reims, September 4-6, 1996, 125– 128, 1996.
- Mahieu, E.; R. Zander, L. Delbouille, P. Demoulin, G. Roland and C. Servais, "Observed Trends in Total Vertical Column Abundances of Atmospheric Gases from IR Solar Spectra Recorded at the Jungfraujoch", J. Atmos. Chem., 28, 227–243, 1997.
- Mahieu, E.; R. Zander, F. Mélen, P. Demoulin, C. Servais, L. Delbouille, and G. Roland, "Recent Characteristic Budget of Inorganic Chlorine and Fluorine above the Jungfraujoch Station", in Proceedings of the Fourth European Symposium on Polar Stratospheric Ozone Research, Schliersee, Germany, September 22-26, 1997. European Commission, Air pollution research report 66: 358–361, 1998.
- Mahieu, E.; R. Zander, F. Mélen, P. Demoulin, C.P. Rinsland, and J.M. Russel-III, "Monitoring the stratospheric chlorine budget during the past decades: the Montreal Protocol at work", in Proceedings of the International Quadrennial Ozone Symposium, Sapporo, Japan, 3-8 July 2000: 149–150, 2000.
- Mahieu, E.; R. Zander, P. Demoulin, M. De Mazière, F. Mélen, C. Servais, G. Roland, L. Delbouille, J. Poels, and R. Blomme, "Fifteen years-trend characteristics of key stratospheric constituents monitored by FTIR above the Jungfraujoch", in Proceedings of the Fifth European Symposium on Stratospheric Ozone, St. Jean de Luz, France, September 27-October 1, 1999. N. R. P. Harris, M. Guirlet and G. T. Amanatidis (Eds). Air pollution Research Report 73 EUR 19340: 99-102, 2000.
- Mahieu, E.; C.P. Rinsland, R. Zander, P. Duchatelet, C. Servais, and M. De Mazière, "Tropospheric and stratospheric carbonyl sulphide (OCS): long-term trends and seasonal cycles above the Jungfraujoch station", in Proceedings of the "Sixth European Symposium on Stratospheric Ozone", Göteborg, Sweden, September 2-6, 2002.
- Makino, Y.; H. Fast, R.L. Mittermeier, T. Sasaki, Y. Sawa, M. Hirota, and K. Kondo Miyagawa, "IR-spectroscopic measurements of stratospheric minor constitutents over Tsukuba, Japan and Eurkea, Canadian Arctic", Atmospheric Ozone, Proc. Quad. Ozone Symp., Sapporo, Japan, R.D. Bojkov and K. Shibasaki eds., 531–532, 2000.
- Mankin, W.G.; "Airborne Fourier transform spectroscopy of the upper atmosphere", Opt. Engr., 17, 39–43, 1978.
- Mankin, W.G. and M.T. Coffey, "Airborne observations of chemical constituents in the Antarctic winter stratosphere", Workshop on Tropospheric Ozone and Quadrennial Ozone Symposium, Abstracts, 54, 1988.
- Mankin, W.G. and M.T. Coffey, "Infrared measurements of column amounts of stratospheric constituents in the Antarctic winter", 1987, Polar Ozone Workshop, Session IV, May 1988.
- Mankin, W.G.; M.T. Coffey, A. Goldman, M.R. Schoebrel, L.R. Lait, and P.A. Newman, "Airborne measurements of stratospheric constituents over the arctic in the winter of 1989", Geophys. Res. Lett., 17, 473–476, 1990.
- Mankin, W.G.; M.T. Coffey, K.V. Chance, W.A. Traub, B. Carli, F. Mencaraglia, S. Piccioli, I.G. Nolt, J.V. Radostitz, R. Zander, G. Roland, D.W. Johnson, G.M. Stokes, C.B. Farmer, and R.K. Seals, "Intercomparison of measurements of stratospheric hydrogen fluoride", J. Atmos. Chem., 10, 219–236, 1990.
- Massie, S.T.; J.A. Davidson, C.A. Cantrell, A.H. McDaniel, J.C. Gille, V.G. Kunde, J.C. Brasunas, B.J. Conrath, W.C. Maguire, A. Goldman, and M.M. Abbas, "Atmospheric infrared emission of ClONO₂ observed by a balloonborne Fourier spectrometer", J. Geophys. Res., 92, 14806–14814, 1987.
- Massie, S.T. and A. Goldman, "The Infrared Absorption Cross-section and Refractive-Index Data in HI-TRAN", HITRAN Special Issue, J. Quant. Spectrosc. Radiat. Transfer, 82, numbers 1-4, 2003.

- Matthews, W.A.; P.V. Johnston, D.G. Murcray, F.H. Murcray, and R.D. Blatherwick, "Column abundance of hydrogen chloride above Lauder, New Zealand", in Ozone in the Atmosphere, 359–362, A. Deepak, Publishing, Hampton, VA, 1989.
- May, R.D. and C.R. Webster, "In-situ stratospheric measurements of HNO₃ and HCl near 30 km using the BLISS tunable laser spectrometer", J. Geophys. Res., **94**, 16343–16350, 1989.
- McElroy, C.T.; A. Goldman, and D.G. Murcray, "Tunable diode laser heterodyne spectrophotometry of ozone", Workshop on Tropospheric Ozone and Quadrennial Ozone Symposium, Abstracts, 247, 1988.
- McElroy, C.T.; A. Goldman, and D.G. Murcray, "Heterodyne spectrophotometry of ozone in the 9.6 micron band using a tunable diode laser", J. Geophys. Res., 95, 5567–5575, 1990.
- McKenzie, R.L.; W.A. Matthews, Y. Kondo, R. Zander, Ph. Demoulin, P. Fabian, D.G. Murcray, F.J. Murcray, O. Lado-Bordowsky, C. Camy-Peyret, H.K. Roscoe, J. A. Pyle, and R. D. McPeters, "Intercomparison of NO column measurements during MAP/GLOBUS 1985", J. Atmos. Chem., 7, 353–367, 1988.
- Meier, A. and J. Notholt, "Determination of the isotopic abundances of heavy ozone as observed in arctic ground-based FTIR-spectra", Geophys. Res. Lett., 23, 551–554, 1996.
- Meier, A.; "Determination of atmospheric trace gas amounts and corresponding natural isotopic ratios by means of ground-based FTIR spectroscopy in the high arctic", AWI Verlag, 309 pp., Reports on Polar Research series, Vol. 236, ISSN 0176-5027, 1997.
- Meier, A.; T. Blumenstock, H. Nakajima, "Regular isotopic observations of stratospheric ozone and its implication for the ozone formation theory", Proceedings of the Fourth European Workshop on Polar Stratospheric Ozone, Schliersee 1997, European Commission - Air pollution research report 66, 216– 219, 1998.
- Meier, A.; A. Goldman, P.S. Manning, T.M. Stephen, C.P. Rinsland, N.B. Jones, and S.W. Wood, "Improvements to Air Mass calculations for Ground-Based Infrared Measurements", J. Quant. Spectrosc. Radiat. Transfer, 83, Electronic Supplement (full report), http://www.uow.edu.au/science/research/acrg/staff/fscatmf.pdf, 2003.
- Meier, A.; A. Goldman, P.S. Manning, T.M. Stephen, C.P. Rinsland, N.B. Jones, and S.W. Wood, "Improvements to Air Mass calculations for Ground-Based Infrared Measurements", J. Quant. Spectrosc. Radiat. Transfer, 83, 109–113, (Summary Note), 2004.
- Melen, F.; A.J. Sauval, N.Grevesse, C.B. Farmer, C. Servais, L. Delbouille, G. Roland, "A New Analysis of the OH Radical Spectrum from Solar Infrared Observations", J.Mol.Spectroscopy, 174, 490–509, 1995.
- Mellqvist, J.; B. Galle and X. Liu, "Retrieval of Height Information of Stratospheric Species from FTIR Spectra Measured in Norway During SESAME, XVII-Quadrennial ozone symposium", L'Aquila, Italy, 12-21, Nov., 1996.
- Mellqvist, Johan; "Application of Infrared and UV-Visible Remote Sensing Techniques for Studying the Stratosphere and for Estimating Antrophogenic Emissions", PhD thesis, Chalmeers University, School of Physics and Engineering Physics, Department of Experimental Physics, Gothenburg, Sweden, 1999.
- Mellqvist, J; B. Galle and Strandberg, A., "Groundbased FTIR measurements at Harestua Norway between 1996- 2001", NDSC 2001 Symposium celebrating 10 years of atmospheric research, 24-27 Sept. 2001, Arachon, France, 2001.
- Mellqvist, J.; B. Galle, T. Blumenstock, F. Hase, D. Yaschov, J. Notholt, B. Sen, G.C. Toon, and M. Chipperfield, "Ground-based FTIR observations of chlorine activation and ozone depletion inside the Arctic vortex during the winter of 1999/2000", J. Geophys. Res., 107(D20), doi:10.1029/2001 JD001080, 2002.
- Michelsen, H.A.; G.L. Manney, M.R. Gunson, C.P. Rinsland, and R. Zander, "Correlations of stratospheric abundances of CH4 and N2O derived from ATMOS measurements", Geophys. Res. Lett., 25, 2777–2780, 1998.
- Michelsen, H.A.; G.L. Manney, M.R. Gunson, and R. Zander, "Correlations of stratospheric abundances of NOy, O3, N2O and CH4 derived from ATMOS measurements", J.Geophys. Res., 103, 28347–28359, 1998.
- Mikhailenko, S.; A. Barbe, and V.G. Tyuterev, "Extended Analysis of Line Positions and Intensities of Ozone Bands in the 2900-3400 cm⁻¹ Region", J. Mol. Spectrosc., **215**, 29–41, 2002.
- Mikhailenko, S.; Y. Babikov, V.G. Tyuterev, and A. Barbe, "The DataBank of Ozone Spectroscopy on WEB (S&MPO)", Computational Technologies, 7, 64–70, (in Russian), 2002.

- Minnaert, M.; "Die Profile der äusseren Teile der starken Fraunhoferschen Linien", Zeitschrift für Astrophysik, 10, 40–51, 1935.
- Mount, G. H.; R.W. Sanders, A.L. Schmeltekopf, and S. Solomon, "Visible spectroscopy at McMurdo station, Antarctica, 1. overview and daily variations of NO₂ and O₃, Austral spring, 1986", J. Geophys. Res., 92, 8320–8328, 1987.
- Mount, G. H.; R.W. Sanders, R.O. Jakoubek, A.L. Schmeltekopf, and S. Solomon, "Visible and nearultraviolet spectroscopy at Thule AFB (76.5cm⁻¹N) from January 28 - February 15", 1988, Polar Ozone Workshop, Session VII, May 1988.
- Murata, I.; Y. Kondo, H. Nakajima, M. Koike, Y. Zhao, W.A. Matthews, and K. Suzuki, "Accuracy of total ozone columns observed with infrared solar spectroscopy", Geophys. Res. Lett., 24, 77–80, 1997.
- Murcray, D.G.; A. Goldman, J. Kosters, R. Zander, W. Evans, N. Louisnard, G. Alamichel, M. Bangham, S. Pollitt, B. Carli, B. Dinelli, S. Piccioli, A. Volboni, W. Traub, and K. Chance, "Intercomparison of stratospheric water vapor profiles obtained during the balloon intercomparison campaign", J. Atmos. Chem., 10, 159–179, 1990.
- Murcray, F.J.; F.H. Murcray, A. Goldman, D.G. Murcray, and C.P. Rinsland, "Infrared measurements of several nitrogen species above the south pole in December 1980 and November/December 1986", J. Geophys. Res., 92, 13373–13376, 1987.
- Murcray, F.J.; D.G. Murcray, A. Goldman, J.G. Keys, and W.A. Matthews, "Infrared measurements in the spring 1987 ozone hole", Polar Ozone Workshop, Session IV, May 1988.
- Murcray, F.J.; A. Goldman, R. Blatherwick, A. Matthews, and N. Jones, "HNO₃ and HCl amounts over McMurdo during the spring of 1987", J. Geophys. Res., 94, 16615–16618, 1989.
- Murcray, F.J.; J.R. Starkey; W.J. Williams, W.A. Matthews, U. Schmidt, P. Aimedieu, C. Camy-Peyret, "HNO3 profiles obtained during the EASOE campaign", Geophys. Res. Lett., 21, 1223–1226, 1994.
- Nakajima, H.; X. Liu, I. Murata, Y. Kondo, F.J. Murcray, M. Koike, Y. Zhao, and H. Nakane, "Retrieval of vertical profiles of ozone from high resolution infrared solar spectra at Rikubetsu, Japan", J. Geophys. Res., 102, 29981–29990, 1997.
- Nemtchinov, Vassilii and Prasad Varanasi, "Thermal Infrared Absorption Cross-sections of CCl4 Needed for Atmospheric Remote Sensing", HITRAN Special Issue, J. Quant. Spectrosc. Radiat. Transfer, 82, numbers 1-4, 2003.
- Nemtchinov, Vassilii and Prasad Varanasi, "Thermal Infrared Absorption Cross-sections of CF4 for Atmospheric Applications", HITRAN Special Issue, J. Quant. Spectrosc. Radiat. Transfer, 82, numbers 1-4, 2003.
- Newchurch, M.J.; M. Allen, M.R. Gunson, R.J. Salawitch, G.B. Collins, K. H. Huston, M.M. Abbas, M.C. Abrams, A.Y. Chang, D.W. Fahey, R. S. Gao, F.W. Irion, M. Loewenstein, G. L. Manney, H.A. Michelsen, J. R. Podolske, C.P. Rinsland, and R. Zander, "Stratospheric NO and NO2 abundances from ATMOS solar-occultation measurements", Geophys. Res. Lett., 23, 2373–2376, 1996.
- Nikitin, A.; J.-P. Champion, and V.G. Tyuterev, "The MIRS Computer Package for Modeling the Rovibrational Spectra of Polyatomic Molecules", HITRAN Special Issue, J. Quant. Spectrosc. Radiat. Transfer, 82, numbers 1-4, 2003.
- Norton, R.H. and C.P. Rinsland, "ATMOS data processing and science analysis methods", Appl. Opt., 30, 389–400, 1991.
- Notholt, J.; F. Cappellani, H. Roesdahl, G. Restelli, "Absolute infrared band intensities and air broadening coefficient for spectroscopic measurements of formic acid in air", Spectrochim. Acta A, 47A, No. 3/4, 477–483, 1991.
- Notholt, J.; R. Neuber, O. Schrems, and T.v. Clarmann, "Stratospheric trace gas concentrations in the Arctic polar night derived by FTIR-spectroscopy with the moon as light source", Geophys. Res. Lett., 20, 2059–2062, 1993.
- Notholt, J.; O. Schrems, "Ground-based FTIR measurements of vertical column densities of several trace gases above Spitzbergen", Geophys. Res. Letters, 21, 1355–1358, 1994.
- Notholt, J.; T.v. Clarmann, G.P. Adrian, O. Schrems, "Ground-based FTIR measurements of ClONO2 column amounts in the Arctic", Geophys. Res. Letters, 21, 1359–1362, 1994.
- Notholt, J.; "FTIR measurements of HF, N₂O, and CFCs during the Arctic polar night with the moon as light source, subsidence during winter 1992/93", Geophys. Res. Lett., **21**, 2385–2388, 1994.

- Notholt, J.; "The Moon as a light source for FTIR measurements of stratospheric trace gases during the polar night: Application for HNO₃ in the Arctic", J. Geophys. Res., **99**, 3607–3614, 1994.
- Notholt, J. and O. Schrems, "Ground-based FTIR measurements of vertical column densities of several trace gases above Spitsbergen", Geophys. Res. Lett., 21, 1355–1358, 1994.
- Notholt, J. and O. Schrems," Ground-based FTIR measurements of vertical column densities of several trace gases above Spitsbergen", Geophys. Res. Lett., 21, 1355–1358, 1994.
- Notholt, J.; A. Meier, and S. Peil, "Total column densities of tropospheric and stratospheric trace gases in the undisturbed Arctic summer atmosphere", J. Atmosph. Chem., 20, 311–332, 1995.
- Notholt, J.; I. Beninga, O. Schrems, "Shipborne FTIR measurements of atmospheric trace gases on a South (33°S) to North (53°N) Atlantic traverse", Applied Spectr., 49, 1525–1527, 1995.
- Notholt, J.; P.v.d. Gathen, and S. Peil, "Heterogenous conversion of HCl and CLONO₂ during the arctic winter 1992/1993 initiating ozone depletion", J. Geophys. Res., 100, 11269–11274, 1995.
- Notholt, J. and O. Schrems, "Ground-based FTIR spectroscopic absorption measurements of stratospheric trace gases with the sun and moon as light sources", J. Mol. Structure, **347**, 407–416, 1995.
- Notholt, J.; K. Pfeilsticker, "Stratospheric trace gas measurements in the near UV and visible spectral range with the sun as light source using a Fourier transform spectrometer", Applied Spectr., 50, 583–587, 1996.
- Notholt, J.; G.C. Toon, F. Stordal, S. Solberg, N. Schmidbauer, A. Meier, E. Becker, and B. Sen, "Seasonal variations of atmospheric trace gases in the high arctic at 79° N", J. Geophys. Res., 102, 12855–12861, 1997.
- Notholt, J.; G.C. Toon, R. Lehmann, B. Sen, J.-F. Blavier, "Comparison of Arctic and Antarctic trace gas column abundances from ground-based FTIR spectrometry", J. Geophys. Res., 102, 12863–12869, 1997.
- Notholt, J.; H. Schütt, A. Keens, "Solar absorption measurements of stratospheric OH in the UV with a Fourier-transform spectrometer", Appl. Optics, 78, 833–841, 1997.
- Notholt, J.; G.C. Toon, B. Sen, N.B. Jones, C.P. Rinsland, R. Lehmann, M. Rex, "Variations in the tropical uplift following the Pinatubo eruption studied by infrared solar absorption spectrometry", Geophys. Res. Letters, 27, 2609–2612, 2000.
- Notholt, J.; G.C. Toon, C.P. Rinsland, N. Pougatchev, N.B. Jones, B.J. Conner, R. Weller, M. Gautrois, O. Schrems, "Latitudinal variations of trace gas concentrations in the free troposphere measured by solar absorption spectroscopy during a ship cruise", J. Geophys. Res., 105, 1337–1349, 2000.
- Notholt, J.; T. Albrecht, M. Rex, J. Krieg, G.C. Toon, J. Russell-III, N. Jones, "Measurements of atmospheric trace gases by solar absorption spectrometry between 80° N and 70° S", in: Optical Remote Sensing of the Atmosphere, OSA Technical Digest, 167-169, 2001.
- Notholt, J.; Z. Kuang, C.P. Rinsland, G.C. Toon, M. Rex, N. Jones, T. Albrecht, H. Deckelmann, J. Krieg, C. Weinzierl, H. Bingeme r, R. Weller, O. Schrems, "Enhanced upper tropical tropospheric COS: Impact on the stratospheric aerosol layer", Science, 300, 307–310, 2003.
- **Ogawa, T.**; M. Koike, and K. Suzuki, "Observation of vertical ozone profiles with the EXOSC backscattered UV spectrophotometer", Workshop on Tropospheric Ozone and Quadrennial Ozone Symposium, Abstracts, 131, 1988.
- Orphal, J.; B. Redlich, H. Grothe, D. Scheffler, H. Willner, A. Frenzel, and C. Zetzsch, "High-resolution spectra and rotational constants of the n4 band of BrNO2 (nitryl bromide)", J. Molec. Spectrosc., 191, 88–92, 1998.
- Orphal, J.; "The n1 bands of 79BrNO2 and 81BrNO2", J. Molec. Struct., 517/518, 181-186, 2000.
- Park, J.H.; R. Zander, C.B. Farmer, C.P. Rinsland, J.M. Russell-III, R.H. Norton and O.F. Raper, "Spectroscopic detection of CH₃Cl in the upper troposphere and lower stratosphere", Geophys. Res. Lett., 13, 765–768, 1986.
- Park, J.H.; B. Carli, and A. Barbis, "Stratospheric HBr mixing ratio obtained from far infrared emission spectra", Geophys. Res. Lett., 16, 787–790, 1989.
- Parrish, A.; R.L. de Zafra, M. Jaramillo, B. Connor, P.M. Solomon, and J.W. Barrett, "Extremely low N₂O concentrations in the springtime stratosphere at McMurdo station, Antarctica", Nature, 332, 53–55, 1988.
- Parrish, A.; B.J. Connor, J.J. Tsou, I.S. McDermid, and W.P. Chu, "Ground-based microwave monitoring of stratospheric ozone", J.Geophys, Res., 97, 2541–2546, 1992.

- Paton-Walsh, C.; W. Bell, T. Gardiner, N. Swann, P. Woods, J. Notholt, H. Schütt, B. Galle, W. Arlander, J. Mellqvist, "An uncertainty budget for ground-based Fourier transform infrared column measurements of HCl, HF, N2O, and HNO3 deduced from results of side-by-side instrument intercomparisons", J. Geophys. Res., 102, 8867–8873, 1997.
- Paton-Walsh, C.; W. Bell, T. Blumenstock, M.P. Chipperfield, B. Galle, J. Mellqvist, J. Notholt, R. Zander, P. Demoulin, E. Mahieu, "Ground-based FTIR Measurements from a Network of European sites during the Winter of 1995/96 and a Comparison with a 3D Chemical Transport Model: Evidence of Chlorine Activation and Ozone Depletion", Proceedings of the Fourth European Workshop on Polar Stratospheric Ozone, Schliersee 1997, European Commission - Air pollution research report 66, 305–308, 1998.
- Paton-Walsh, Clare; Nicholas B. Jones, Stephen Wilson, Arndt Meier, Nicholas Deutscher, David Griffith, Ross Mitchell and Susan Campbell, "Trace gas emissions from biomass burning inferred from aerosol optical depth", Geophys. Res. Lett., 31, in press, 2004.
- Perner, D.; U. Parchatka, V. Wolf, and P.J. Crutzen, "Ground based spectroscopic observations of the Arctic stratosphere, Polar Ozone Workshop", Session VII, May 1988.
- Perner, D.; U. Parchatka, and V. Wolf, "Spectroscopic observations in the springtime Arctic stratosphere", Workshop on Tropospheric Ozone and Quadrennial Ozone Symposium, Abstracts, 80, 1988.
- Perrin, A.; C.P. Rinsland, and A. Goldman, "Spectral Parameters for the n6 Region of HCOOH and its Measurement in the Tropospheric Spectrum", J. Geophys. Res., 104, 18661–18666, 1999.
- Perrin, A.; J.-M. Flaud, F. Keller, A. Goldman, R.D. Blatherwick, F.J. Murcray, and C.P. Rinsland, "New Analysis of the n8+n9 Band of HNO3 Line Positions and Intensities, and Resonances Involving the v6=v7=1 Dark State", J. Molec. Spectrosc., 194, 113–123, 1999.
- Perrin, A.; J.-M. Flaud, F. Keller, M.A.H. Smith, C.P. Rinsland, V. Malathy Devi, D. Chris Benner, T.M. Stephen, and A. Goldman, "The n1 + n3 Bands of the ¹⁶O¹⁷O¹⁶O and ¹⁶O¹⁷O¹⁶O Isotopomer of Ozone", J. Molec. Spectrosc., 200, 248–252, 2000.
- Perrin, A.; J.-M. Flaud, F. Keller, M.A.H. Smith, C.P. Rinsland, V. Malathy Devi, D. C. Benner, T. M. Stephen, and A. Goldman, "The v1 + v3 Bands of the 16-O 17-O 16-O and 16-O 16-O 17-O Isotopomers of Ozone", J. Mol. Spectrosc., 207, 54–59, 2001.
- Peter, R.; K. Künzi, and G.K. Hartmann, "Latitudinal survey of water vapor in the middle atmosphere using an airborne millimeter wave sensor", Geophys. Res. Lett., 15, 1173–1176, 1988.
- **Peterson, D.B.** and J. M. Margitan (editors), "Upper atmospheric research satellite correlative measurements program (UARS-CMP) balloon data atlas", NASA, Washington DC, 1995.
- Podolske, J.R.; M. Loewenstein, S.E. Strahan, and T.E. Blackburn, "ATLAS an airborne tunable laser absorption spectrometer for rapid trace gas measurement from high altitude aircraft", Workshop on Tropospheric Ozone and Quadrennial Ozone Symposium, Abstracts, 175, 1988.
- Pollitt, S.; D.G. Murcray, A. Goldman, J.J. Kosters, W.J. Williams, N. Louisnard, W.F.J. Evans, M.T. Coffey, W.G. Mankin, R. Zander, D.W. Johnson, G. Stokes, and R.K. Seals, "BIC nitric acid intercomparison", J. Atmosph. Chem., submitted, 1990.
- Pommereau, J.P. and F. Goutail, "An ozone, nitrigen dioxide and chlorine dioxide permanent monitoring station at Dumont d'Urville, Antarctica (66 S, 134 E)", Workshop on Tropospheric Ozone and Quadrennial Ozone Symposium, Abstracts, 167, 1988.
- **Pommereau, J.P.** and F. Goutail, "Ozone and nitrogen dioxide ground based monitoring by zenith sky visible spectrometry in Artic and Antarctic", Polar Ozone Workshop, Session VII, May 1988.
- **Pougatchev, N.S.;** A.G. Bessonov, and A.S. Smirnov, Ground-based infrared measurements of the atmospheric ethane (C_2H_6) and acetylene (C_2H_2) from the high resolution solar absorption spectra", translation from "Nazemnyye Izmereniya Soderzhaniya Etana (C_2H_6) I Atsetilena (C_2H_2) VO Vsey Tolshche Atmosfery Po Solnechnym Ik-Spectram Sysokogo Razresheniya", Optika Atmosfery, **3**, No. 2, 170–173, 1990.
- Pougatchev, N.S. and C.P. Rinsland, "Spectroscopic study of the seasonal variation of carbon monoxide distribution above Kitt Peak", J. Geophys. Res., 100, 1409–1416, 1995.
- Pougatchev, N.S.; B.J. Connor, and C.P. Rinsland,"Infrared measurements of the ozone vertical distribution above Kitt Peak", J. Geophys. Res., 100, 16689–16697, 1995.
- Pougatchev, N.S.; B.J. Connor, N.B. Jones, C.P. Rinsland, "Validation of ozone profile retrievals from infrared ground-based solar spectra", Geophys. Res. Lett., 23(13), 1637–1640, 1996.

- Pougatchev, N.S.; N.B. Jones, B.J. Connor, C.P. Rinsland, E. Becker, M.T. Coffey, V.S. Connors, P. Demoulin, A.V. Dzhola, H. Fast, E.I. Grechko, J.W. Hanningan, M. Koike, Y. Kondo, E. Mahieu, W.G. Mankin, R.L. Mittermeier, J. Norholt, H.G. Reichle Jr., B. Sen, L.P. Steele, G.C. Toon, L.N. Yurganov, R. Znader, and Y. Zhao, "Ground-based infrared solar spectroscopic measurements of carbon monoxide during 1994 Measurement of Air Pollution From Space (MAPS) Flights", J. Geophys. Res., 103, 19317–19325, 1998.
- Raper, O.F.; C.B. Farmer, R. Zander, and J.H. Park," Infrared spectroscopic measurements of halogenated sink and reservoir gases in the stratosphere with the ATMOS instrument", J. Geophys. Res., 92, 9851– 9858, 1987.
- Rathke, C.; J. Fischer, E. Becker, J. Notholt, "Comparison of stratus cloud properties derived from coincident airborne visible and ground-based infrared spectrometer measurements", Geophys. Res. Lett., 27, 2641–2644, 2000.
- Reisinger, A.R.; N.B. Jones, W.A. Matthews, and C.P. Rinsland, "Southern hemisphere ground based measurements of Carbonyl Fluoride (COF₂) and Hydrogen Fluoride (HF): Partitioning between Fluorine reservoire species", Geophys. Res. Lett., 21, 797–800, 1994.
- Reisinger, A.R.; N.B. Jones, W.A. Matthews, and C.P. Rinsland, "Southern hemisphere midlatitude groundbased measurements of ClONO₂: Method of analysis, seasonal cycle, and long-term trend", J. Geophys. Res., 100(D11), 23183–23193, 1995.
- Rex, M.; N.R. Harris, P.v.d. Gathen, R. Lehmann, G.O. Braathen, E. Reimer, A. Beck, M.P. Chipperfield, R. Alfier, M. Allaart, F.O'Connor, H. Dier, V. Dorokhov, H. Fast, M. Gil, E. Kyrö, Z. Litynska, I. S. Mikkelsen, M. Molyneux, H. Nakane, J. Notholt, M. Rummukainen, P. Viatte, J. Wenger, "Prolonged stratospheric ozone loss in the 1995/96 Arctic winter", Nature, 389, 835–838, 1997.
- Rex, M.; K. Dethloff, D. Handorf, A. Herber, R. Lehmann, R. Neuber, J. Notholt, A. Rinke, P. von der Gathen, A. Weisheimer, and H. Gernandt, "Arctic and Antarctic ozone layer observations: chemical and dynamical aspects of variability and long-term changes in the polar stratosphere", Polar Research, 19(2), 193–204, 2000.
- Rinsland, C.P.; A. Goldman, F.J. Murcray, D.G. Murcray, M.A.H. Smith, R.K. Seals, Jr., J.C. Larsen, Jr., and P.L. Rinsland, "Stratospheric N2O mixing ratio profile from high resolution balloon-borne solar absorption spectra and laboratory spectra near 1880 cm⁻¹", Appl. Opt., 21, 4351–4355, 1982.
- Rinsland, C.P.; M.A.H. Smith, P.L. Rinsland, A. Goldman, J.W. Brault, and G.M. Stokes, "Ground-based infrared spectroscopic measurements of atmospheric hydrogen cyanide", J. Geophys. Res., 87, 11119– 11125, 1982.
- Rinsland, C.P.; A. Goldman, V. Malathy Devi, B. Fridovich, D. Snyder, G.D. Jones, F.J. Murcray, M.A.H. Smith, R.K. Seals jr., M.T. Coffey, and W.G. Mankin, "Simultaneous stratospheric measurements of H₂O, HDO, and CH₄ from balloon-borne and aircraft infrared solar absorption spectra and tunable diode laser laboratory spectra of HDO", J. Geophys. Res., 89, 7259–7266, 1984.
- Rinsland, C.P.; et al., "Diurnal variation of atmospheric nitric oxide: Ground-based infrared spectroscopic measurements and their interpretation with time-dependent photochemical model calculations", J. Geophys. Res., 89, 9613–9622, 1984.
- Rinsland, C.P.; A. Goldman, and G.M. Stokes, "Identification of atmospheric C2H2 lines in the 3230-3340 cm⁻¹ region of high resolution solar absorption spectra recorded at the National Solar Observatory", Appl. Opt., 24, 2044–2046, 1985.
- Rinsland, C.P.; V. Malathy Devi, J.-M. Flaud, C. Camy–Peyret, M.A.H. Smith, and G.M. Stokes "Identification of ¹⁸O–Isotopic Lines of Ozone in Infrared Ground–Based Solar Absorption Spectra", J. Geophys. Res., 90, 10719–10725, 1985.
- Rinsland, C.P.; R. Zander, C.B. Farmer, R.H. Norton, L.R. Brown, J. M. Russell-III, and J.H. Park, " Evidence for the presence of the 802.7 cm⁻¹ band Qbranch of HO₂NO₂ in highresolution solar absorption spectra of the stratosphere", Geophys. Res. Lett., 13, 761–764, 1986.
- Rinsland, C.P.; R. Zander, L.R. Brown, C.B. Farmer, J.H. Park, R.H. Norton, J.M. Russell-III, and O.F. Raper, "Detection of carbonyl flouride in the stratosphere", Geophys. Res. Lett., 13, 769–772, 1986.
- **Rinsland, C.P.** and J.S. Levine, "Identification and measurement of atmospheric ethane (C_2H_6) from a 1951 infrared solar spectrum, Appl. Opt., **25**, 4522–4525, 1986.
- Rinsland, C.P.; R. Zander, C.B. Farmer, R.H. Norton, and J. M. Russell-III, "Concentrations of ethane (C₂H₆) in the lower stratosphere and upper troposphere and acetylene (C₂H₂) in the upper troposphere deduced from ATMOS/Spacelab 3 spectra", J. Geophys. Res., 92, 11951–11964, 1987.

- Rinsland, C.P.; A. Goldman, F.J. Murcray, F.H. Murcray, D.G. Murcray, and J.S. Levine,"Infrared measurements of increased CF₂Cl₂ (CFC12) absorption above the south pole", Appl. Opt., 27, 627–630, 1988.
- Rinsland, C.P.; A. Goldman, F.J. Murcray, F.H. Murcray, R.D. Blatherwick, and D.G. Murcray, "Infrared measurements of atmospheric gases above Mauna Loa, Hawaii, in February 1987", J. Geophys. Res., 93, 12607–12626, 1988.
- Rinsland, C.P.; D.W. Johnson, A. Goldman, and J.S. Levine, "Evidence for a Decline in the Atmospheric Accumulation Rate of CHClF₂ (CFC-22)", Nature,337, 535–537, 1989.
- Rinsland, C.P.; G.C. Toon, C.B. Farmer, R.H. Norton, and J.S. Namkung, "Stratospheric N₂O₅ protiles at sunrise and sunset from further analysis of the ATMOS/Spacelab 3 solar spectra", J. Geophys. Res.,94, 18341–18349, 1989.
- Rinsland, C.P.; R. Zander, J.S. Namkung, C.B. Farmer, and R.H. Norton, "Stratospheric infrared continuum absorptions observed by the ATMOS instrument", J. Geophys. Res., 94, 16303–16322, 1989.
- Rinsland, C.P.; A. Goldman, F.J. Murcray, R.D. Blatherwick, J.J. Kosters, D.G. Murcray, N.D. Sze, and S.T. Massie, "Long-term trends in the concentration of SF₆, CHClF₂, and COF₂ in the lower stratosphere from analysis of high-resolution infrared solar occultation spectra", J. Geophys. Res.,95, 16477– 16490, 1990.
- **Rinsland, C.P.;** L.R. Brown, and C.B. Farmer, "Infrared spectroscopic detection of sulfur hexafluoride (SF₆) in the lower stratosphere and upper troposphere", J. Geophys. Res., **95**, 5577–5585, 1990.
- Rinsland, C.P.; J.S. Levine, A. Goldman, N.D. Sze, M.K.W. Ko, and D.W. Johnson, "Infrared measurements of HF and HCl total column abundances above Kitt Peak, 1977–1990: seasonal cycles, long-term increases, and comparison with model calculations", J. Geophys. Res., 96, 15523–15540, 1991.
- Rinsland, C.P.; M.R. Gunson, J.C. Foster, R.A. Toth, C.B. Farmer, and R. Zander, "Stratospheric Profiles of Heavy Water Vapor Isotopes and CH₃D from Analysis of the ATMOS Spacelab 3 Infrared Solar Spectra", J. Geophys. Res., 96, 1057–1068, 1991.
- Rinsland, C.P.; R. Zander, A. Goldman, F.J. Murcray, D.G. Murcray, M.R. Gunson, and C.B. Farmer, "The fundamental quadrupole band of ¹⁴N₂: line positions from high-resolution stratospheric solar absorption spectra", J. Mol. Spectrosc., 148, 274–279, 1991.
- Rinsland, C.P.; R. Zander, and P. Demoulin, "Ground-based infrared measurements of HNO₃ total column abundances: Long-Term trend and variability", J. Geophys. Res., 96, 9379–9389, 1991.
- Rinsland, C.P.; M.R. Gunson, R. Zander, and M. Lopez-Puertas, "Middle and upper atmosphere pressuretemperature profiles and the abundances of CO₂ and CO in the upper atmosphere from ATMOS/Spacelab 3 observations", J. Geophys. Res., 97, 20479–20495, 1992.
- Rinsland, C.P.; R. Zander, M. Mahieu, P. Demoulin, A. Goldman, D.H. Ehalt, and J. Rudolph, "Groundbased infrared measurements of Carbonyl Sulfide total column abundances: Long-term trends and variability", J. Geophys. Res., 97, 5995–6002, 1992.
- Rinsland, C.P.; M.R. Gunson, M.C. Abrams, L.L. Lowes, R. Zander, and E. Mahieu, "ATMOS/ATLAS 1 measurements of sulfur hexafluoride (SF6) in the lower stratosphere and upper troposphere", J. Geophys. Res., 98, 20491–20494, 1993.
- Rinsland, C.P.; A. Goldman, F.J. Murcray, S.J. David, R.D. Blatherwick, and D.G. Murcray, "Infrared Spectroscopic measurements of the Ethane (C₂H₆) total column abundance above Mauna Loa, Hawaii – seasonal variations", J. Quant. Spectrosc. Radiative Transfer, 52, 273–279, 1994.
- Rinsland, C.P.; M.R. Gunson, M.C. Abrams, L.L. Lowes, R. Zander, E. Mahieu, A. Goldman, M.K.W. Ko, J.M. Rodriguez, and N. D. Sze, "Heterogeneous conversion of N2O5 to HNO3 in the post-Mt. Pinatubo eruption stratosphere", J. Geophys. Res., 99, 8213–8219, 1994.
- Rinsland, C.P.; M.R. Gunson, M.C. Abrams, R. Zander, E. Mahieu, A. Goldman, M.K.W. Ko, J.M. Rodriguez, and N. D. Sze, "Profiles of stratospheric chlorine nitrate (ClONO2) from atmospheric trace molecule spectroscopy/ATLAS-1 infrared solar occultation spectra", J. Geophys. Res., 99, 18895–18900, 1994.
- Rinsland, C.P.; N.B. Jones, and W.A. Matthews, "Infrared Spectroscopic Measurements of the Total Column Abundance of Ethane (C2H6) above Lauder, New Zealand", J. Geophys. Res., 99, 25941–25945, 1994.
- Rinsland, C.P.; M.R. Gunson, M.C. Abrams, L.L. Lowes, R. Zander, E. Mahieu, A. Goldman, F.W. Irion, R. A. Salavitch, and H.A. Michelsen, "April 1993 Arctic profiles of stratospheric HCl, ClONO2, and CCl2F2 from ATMOS/ATLAS 2 infrared solar occultation spectra", J. Geophys. Res., 100, 14019– 14027, 1995.

- Rinsland, C.P.; B.J. Connor, N.B. Jones, I. Boyd, W.A. Matthews, A. Goldman, F.J. Murcray, D.G. Murcray, S.J. David, and N. S. Pugatchev, "Comparison of infrared and Dobson total columns measured from Lauder, New Zealand", Geophys. Res. Lett., 23, 1025–1028, 1996.
- Rinsland, C.P.; E. Mahieu, R. Zander, M.R. Gunson, R.J. Salawitch, A.Y. Chang, A. Goldman, M.C. Abrams, H.A. Michelsen, M.M. Abbas, M.J. Newchurch, and F.W. Irion, "Trends of OCS, HCN, SF6, and CHClF2 (HCFC-22) in the lower stratosphere from 1985 and 1994 Atmospheric Trace Molecule Spectroscopy experiment measurements near 30° N latitude", Geophys. Res. Lett., 23, 2349–2352, 1996.
- Rinsland, C.P.; M.R. Gunson, R.J. Salawitch, H.A. Michelsen, R. Zander, M.J. Newchurch, M.M. Abbas, M.C. Abrams, G.L. Manney, A.Y. Chang, F.W. Irion, A. Goldman, and E. Mahieu, "ATMOS/AT-LAS-3 measurements of stratospheric chlorine and reactive nitrogen partitioning inside and outside the November 1994 Antarctic vortex", Geophys. Res. Lett., 23, 2365–2368, 1996.
- Rinsland, C.P.; M.R. Gunson, R.J. Salawitch, M.J. Newchurch, R. Zander, M.M. Abbas, M.C. Abrams, G.L. Manney, H.A. Michelsen, A.Y. Chang, and A. Goldman, "ATMOS measurements of H2O+2CH4 and total reactive nitrogen in the November 1994 Antarctic stratosphere: dehydration and denitrification in the vortex", Geophys. Res. Lett., 23, 2397–2400, 1996.
- Rinsland, C.P.; R. Zander, P. Demoulin, and E. Mahieu, "ClONO₂ total vertical column abundances above the Jungfraujoch station, 1986–1994: Long-term trend and winter-spring enhancements", J. Geophys. Res., 101, 3891–3899, 1996.
- Rinsland, C.P.; M.R. Gunson, P.H. Wang, R.F. Arduini, B.A. Baum, P. Minnis, A. Goldman, M.C. Abrams, R. Zander, E. Mahieu, R.J. Salawitch, H.A. Michelsen, F.W. Irion, and M.J. Newchurch, "ATMOS/-ATLAS 3 infrared profile measurements of clouds in the tropical and subtropical upper troposphere", J. Quant. Spectrosc. Radiat. Transfer, 60, 903–919, 1998.
- Rinsland, C.P.; M.R. Gunson, P.H. Wang, R.F. Arduini, B.A. Baum, P. Minnis, A. Goldman, M.C. Abrams, R. Zander, E. Mahieu, R.J. Salawitch, H.A. Michelsen, F.W. Irion, and M.J. Newchurch, "ATMOS/-ATLAS 3 infrared profile measurements of trace gases in the November 1994 tropical and subtropical upper troposphere", J. Quant. Spectrosc. Radiat. Transfer, 60, 891–901, 1998.
- Rinsland, C.P.; N.B. Jones, B.J. Connor, J.A. Logan, N.S. Pougatchev, A. Goldman, F.J. Murcray, T.M. Stephen, A.S. Pine, R. Zander, E. Mahieu, and P. Demoulin, "Northern and southern hemisphere ground-based infrared spectroscopic measurements of tropospheric carbon monoxide and ethane", J. Geophys. Res., 103, 28197–28218, 1998.
- Rinsland, C.P.; A. Goldman, F.J. Murcray, T.M. Stephen, N.S. Pougatchev, J. Fishman, S.J. David, R.D. Baltherwick, P.C. Novelli, N.B. Jones, and B.J. Connor, "Infrared solar spectroscopic measurements of free tropospheric CO, C2H6, and HCN above Mauna Loa, Hawaii: Seasonal variations and evidence for enhanced emissions from the Southeast Asian tropical fires of 1997-1998", J. Geophys. Res., 104, 18667–18680, 1999.
- Rinsland, C.P.; R.J. Salavitch, G.L. Manney, M.R. Gunson, H.A. Michelsen, S. Solomon, R. Zander, E. Mahieu, A. Goldman, M.J. Newchurch, and F.W. Irion, "Polar Stratospheric Descent of NOy and CO and Arctic Denitrification during Winter 1992-1993", J. Geophys. Res., 104, 1847–1861, 1999.
- Rinsland, C.P.; A. Goldman, B.J. Connor, T.M. Stephen, N.B. Jones, S.W. Wood, F.J. Murcray, S.J. David, R.D. Blatherwick, R. Zander, E. Mahieu, and P. Demoulin, "Correlation relationships of stratospheric molecular constituents from high spectral resolution, ground-based infrared solar absorption spectra", J. Geophys. Res., 105, 14637–14652, 2000.
- Rinsland, C.P.; E. Mahieu, R. Zander, P. Demoulin, J. Forrer, B. Buchmann, "Free tropospheric CO, C2H6, and HCN above central Europe: Recent measurements from the Jungfraujoch station including the detection of elevated columns during 1998", J. Geophys. Res., 105 (D19), 24235–24249, 2000.
- Rinsland, C.P.; N.B. Jones, B.J. Connor, J.A. Logan, N.S. Pougatchev, A. Goldman, F.J. Murcray, T.M. Stephen, A.S. Pine, R. Zander, E. Mahieu, P. Demoulin, C.P. Rinsland, J. Forrer, and B. Buchmann, "Free tropospheric CO, C2H6 and HCN above central Europe: recent measurements from the Jungfraujoch station including the detection of elevated columns during 1998", J. Geophys. Res., 105, 24235–24249, 2000.
- Rinsland, C.P.; R.J. Salavitch, G.B. Osterman, F.W. Irion, B. Sen, R. Zander, E. Mahieu, and M.R. Gunson, "Stratospheric CO at Tropical and Mid-Latitudes : ATMOS Measurements and Photochemical Steady-State Model Calculations", Geophys. Res. Lett., 27, 1395–1398, 2000.
- Rinsland, C.P.; A. Goldman, R. Zander, and E. Mahieu, "Enhanced tropospheric HCN columns above Kitt Peak during the 1982-1983 and 1997-1998 El Nino warm phases", J. Quant. Spectrosc. Radiat. Transfer, 69, 3–8, 2001.

- Rinsland, C.P.; A. Meier, D.W.T. Griffith, and L.S. Chiou, "Ground-based Measurements of Tropospheric CO, C2H6, and HCN from Australia at 34°S Latitude during 1997-1998", J. Geophys. Res., 106, 20913–20924, 2001.
- Rinsland, C.P.; R. Zander, E. Mahieu, L.S. Chiou, A. Goldman, and N.B. Jones, "Stratospheric HF column abundances above Kitt Peak (31.9°N latitude) : Trends from 1977 to 2001 and correlations with stratospheric HCl columns", J. Quant. Spectrosc. Radiat. Transfer, 74, 205–216, 2001.
- Rinsland, C.P.; A. Goldman, E. Mahieu, R. Zander, J. Notholt, N. Jones, D.W.T. Griffith, T.M. Stephen, L.S. Chiou, "Ground-based infrared spectroscopic measurements of carbonyl sulfide : Free tropospheric trends from a 24-year time series of solar absorption measurements", J. Geophys. Res., 107, No. D22, 4657, doi: 10.1029/2002JD002522, 2002.
- Rinsland, C.P.; N.B. Jones, B.J. Connor, S.W. Wood, A. Goldman, T.M. Stephen, F.J. Murcray, L.S. Chiou, R. Zander, and E. Mahieu, "Multiyear infrared solar spectroscopic measurements of HCN, CO, C2H6 and C2H2 tropospheric columns above Lauder, New Zealand (45°S Latitude)", J. Geophys. Res., 107, No. D14, doi: 10.1029/2001JD001150, 2002.
- Rinsland, C.P.; R. Zander, E. Mahieu, L.S. Chiou, A. Goldman, and N.B. Jones, "Stratospheric HF Column abundances above Kitt Peak (31.9°N Latitude): Trends from 1977 to 2001 and Correlations with HCl Stratospheric Columns", J. Quant. Spectrosc. Radiat. Transfer, 74(2), 205–216, 2002.
- Rinsland, C.P.; A. Goldman, T.M. Stephen, L.S. Chiou, E. Mahieu, and R. Zander, "SF6 ground-based infrared solar absorption measurements : long-term trend, pollution events, and a search for SF5CF3 absorption", J. Quant. Spectrosc. Radiat. Transfer, 78, 41–53, 2003.
- Rinsland, C.P.; E. Mahieu, R. Zander, N.B. Jones, M.P. Chipperfield, A. Goldman, J. Anderson, J.M. Russell-III, P. Demoulin, J. Notholt, G.C. Toon, J.-F.Blavier, B. Sen, R. Sussmann, S.W. Wood, A. Meier, D.W.T. griffith, L.S. Chiou, F.J. Murcray, T.M. Stephen, F. Hase, S. Mikuteit, A. Schulz, and T. Blumenstock, "Long-term trends of inorganic chlorine from ground-based infrared solar spectra: Past increases and evidence of stabilization", J. Geophys. Res., 108(D8), 4252, doi:10.1029/2002JD003001, 2003.
- Rinsland, C.P.; J.-M. Flaud, A. Perrin, M. Birk, G. Wagner, A. Goldman, A. Barbe, M.R. De Backer-Barilly, S.N. Mikhailenko, Vl.G. Tyuterev, M.A.H. Smith, V.M. Devi, D.C. Benner, F. Schreier, K.V. Chance, J. Orphal, and T.S. Stephen, "Spectroscopic Parameters for Ozone and its Isotopes: Recent Measurements, Outstanding Issues, and Prospects for Improvements to HITRAN", HITRAN Special Issue, J. Quant. Spectrosc. Radiat. Transfer, 82, numbers 1-4, 2003.
- Rinsland, C.P.; S.W. Sharpe, and R.L. Sams, "Temperature Dependent Absorption Cross-sections in the Thermal Infrared Bands of SF5CF3," HITRAN Special Issue, J. Quant. Spectrosc. Radiat. Transfer, 82, numbers 1-4, 2003.
- Rinsland, C.P.; V.M. Devi, M.A.H. Smith, D.C. Benner, S.W. Sharpe, and R.L. Sams, "A Multispectrum Analysis of the 1 Band of H12C14N: II. Air- and N2-broadening, Shifts and their Temperature Dependences", HITRAN Special Issue, J. Quant. Spectrosc. Radiat. Transfer, 82, numbers 1-4, 2003.
- Rinsland, C.P.; D.W.T. Griffith, Nicholas B. Jones, Clare Paton-Walsh, Aaron Goldman, Stephen B. Wood, Linda Chiou, and Arndt Meier, "High spectral Resolution Solar Absorption Measurements of Ethylene (C₂H₄)in a Forest Fire Smoke Plume using HITRAN 2000 Parameters: Tropospheric Vertical Profile Retrieval", submitted to J. Geophys. Res., 2004.
- Rodgers, C.D.; "Characterization and error analysis of profile retrieved from remotesounding measurements", J. Geophys. Res., 95, 5587–5595, 1990.
- Roscoe, H.K.; B.J. Kerridge, S. Pollitt, N. Louisnard, J.-M. Flaud, C. Camy-Peyret, C. Alamichel, J.-P. Pommereau, T. Ogawa, N. Iwagami, M.T. Coffey, W.G. Mankin, W.F.J. Evans, C.T. McElroy and J. Kerr, "Intercomparison of remote measurements of stratospheric NO and NO₂, J. Atmos. Chem., 10, 111–144, 1990.
- Rothman, L.S.; et al., "The HITRAN molecular database: Edition of 1991 and 1992", J. Quant. Spectrosc. Radiat. Transfer, 48, 469–507, 1992.
- Rothman, L.S.; A. Goldman, and C.P. Rinsland (editors), "HITRAN", special issue, J. Quant. Spectrosc. Radiat. Transfer, Vol 60, 5/1998.
- Rothman, L.S.; C.P. Rinsland, A. Goldman, S.T. Massie, D.P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. McCann, R.R. Gamache, R.B. Wattson, K. Yoshino, K.V. Chance, K.W. Jucks, L.R. Brown, V. Nemtchinov, and P. Varanasi, "The HITRAN Molecular Spectroscopic Database and HAWKS (HITRAN Atmospheric Workstation): 1996 Edition", J. Quant. Spectrosc. Radiat. Transfer, 60, 665–710, 5/1998.

- Rothman, L.S.; A. Barbe, D.C. Benner, L.R. Brown, C. Camy-Peyret, M.R. Carleer, K. Chance, C. Clerbaux, V. Dana, V.M. Devi, A. Fayt, J.-M. Flaud, R.R. Gamache, A. Goldman, D. Jacquemart, K.W. Jucks, W.J. Lafferty, J.-Y. Mandin, S.T. Massie, V. Nemtchinov, D.A. Newnham, A. Perrin, C.P. Rinsland, J. Schroeder, K.M. Smith, M.A.H. Smith, K. Tang, R.A. Toth, J. Vander Auwera, P. Varanasi, and K. Yoshino, "The HITRAN Molecular Spectroscopic Database: Edition of 2000 Including Updates of 2001", HITRAN Special Issue, J. Quant. Spectrosc. Radiat. Transfer, 82, numbers 1-4, 2003.
- Russell-III, J. M.; C.B. Farmer, C.P. Rinsland, R. Zander, L. Froidevaux, G.C. Toon, B. Gao, J. Shaw and M. Gunson, "Measurements of odd nitrogen compounds in the stratosphere by the ATMOS experiment on Spacelab 3", J. Geophys. Res.,93, 1718–1736, 1988.
- Russell-III, J. M.; L.E. Deaver, M. Luo, R.J. Cicerone, J.H. Park, L.L. Gordley, G.C. Toon, M.R. Gunson, W.A. Traub, D.G. Johnson, K. W. Jucks, R. Zander, and I. G. Nolt, "Validation of hydrogen fluoride measurements made by the Halogen Occultation Experiment from the UARS platform", J. Geophys. Res., 101, 10162–10174, 1996.
- Sanders, R.W.; S. Solomon, G.H. Mount, M.W. Bates, and A.L. Schmeltekopf, "Visible spectroscopy at McMurdo station, Antarctica, 3. observations of NO3", J. Geophys. Res., 92, 8339–8342, 1987.
- Sanders, R.W.; S. Solomon, M.A. Carroll, and A.L. Schmeltekopf, "Groundbased measurements of O₃, NO₂, OClO, and BrO during the 1987 Antarctic ozone depletion event", Workshop on Tropospheric Ozone and Quadrennial Ozone Symposium, Abstracts, 57, 1988.
- Schiller, C.; U. Platt, and U. Schmidt, "Measurements of column densities of NO2 and other species by visible and UV spectroscopy at 68°N", Workshop on Tropospheric Ozone and Quadrennial Ozone Symposium, Abstracts, 163, 1988.
- Schmid, B.; K.J. Thome, P. Demoulin, R. Peter, C. Matzler, and J. Sekler, "Comparison of modeled and empirical approaches for retrieving columnar water vapor from solar transmittance measurements in the 0.94 micron region", J. Geophys. Res., 101, 9345–9358, 1996.
- Schmidt, U.; H.K. Roscoe, N.R.P. Harris, K. Künzi, L. Stefanutti, and R. Zander, "Instrument Development and Deployment", pp. 201-241, in "European Research in the Stratosphere B The contribution of EASOE and SESAME to our current understanding of the ozone layer", European Commission B DGXII, Ref. EUR16986/ISBN 92-827-9719-8, 1997.
- Schreiber, J., "Untersuchung und Reduktion der Eigenstrahlung des Fourierspektrometers BOMEM-DA2", Diplomarbeit in physics (Master's thesis), Universität Karlsruhe, Germany, Institut für Meteorologie und Klimaforschung, 1994.
- Schreiber, J., T. Blumenstock, and H. Fischer "Effects of the self-emission of an IT Fourier-transform spectrometer on measured absorption spectra", Appl. Opt., 35, 6203–6209, 1996.
- Schreiber, J.; T. Blumenstock, and H. Fischer, "Effects of the self-emission of an IR Fourier-transform spectrometer on measured absorption spectra", Appl. Opt., 35, 6203–6209, 1996.
- Schreiber, J.; T. Blumenstock, F. Hase, "Application of a radiometric calibration method to Lunar Fourier transform IR spectra by using a liquid-nitrogen-cooled high-emissivity blackbody", Appl. Opt., 36, 8168– 8172, 1997.
- Schneider, M.; T. Blumenstock, F. Hase, H. Fischer, M. Höpfner, P. Thomas, E. Cuevas, J. Sancho, A. Redondas, M. Yela, O. Puentedura, "Ground-based FTIR measurements at Izana Observatory on Teneriffe in 1999", Proceedings of the Fifth European Workshop on Polar Stratospheric Ozone, St. Jean Du Luz 1999, European Commission - Air pollution research report 73, 344–347, 2000.
- Sen, B.; G.C. Toon, J.-F. Blavier, E.L. Fleming, and C.H. Jackman, "Balloon-borne observations of midlatitude fluorine abundance", J. Geophys. Res., 101(D4), 9045–9054, 1996.
- Shepard, M.W.; A. Goldman, S.A. Clough, and E.J. Mlawer, "Spectroscopic Improvements Providing Evidence of Formic Acid in AERI-LBLRTM Validation Spectra", HITRAN Special Issue, J. Quant. Spectrosc. Radiat. Transfer, 82, numbers 1-4, 2003.
- Sherlock, V.J.; N.B. Jones, W.A. Matthews, F.J. Murcray, R.D. Blatherwick, D.G. Murcray, A. Goldman, C.P. Rinsland, C. Bernardo, and D.W.T. Griffith, "Increase in the vertical column abundance of HCFC-22 (CHClF2) above Lauder, New Zealand, between 1985 and 1994", J. Geophys. Res., 102, 8861–8865, 1997.
- Smith J.P.; and S. Solomon,"Atmospheric NO₃ 3. sunrise disappearance and the stratospheric profile", J. Geophys. Res., 95 (D9), 13819–13827, 1990.
- Smith, M.A.H.; V. Malathy Devi, D.C. Benner, and C.P. Rinsland, "Absolute Intensities of ¹⁶O₃ Lines in the 9-11µm Region", J. Geophys. Res., 106, 9909–9921, 2001.

- Solomon, S.; A.L. Schmeltekopf and R.W. Sanders, "On the interpretation of zenith sky absorption measurements", J. Geophys. Res., 92, 8311–8319, 1987.
- Solomon, S.; G.H. Mount, R.W. Sanders and A.L. Schmeltekopf, "Visible spectroscopy at McMurdo station, Antarctica, 2. observations of OClO", J. Geophys. Res., 92, 8329–8338, 1987.
- Solomon, S.; R.W. Sanders, M.A. Carroll and A.L. Schmeltekopf, "Observations of the diurnal variations of BrO and OClO at McMurdo Station, Antarctica (78°S)", Polar Ozone Workshop, Session IV, May 1988.
- Solomon, S.; and J.G. Keys, "Seasonal variations in Antarctic NOx chemistry", J. Geophys. Res., 97, 7971– 7978, 1992.
- Stephen, T.M.; A. Goldman, A. Perrin, J.-M. Flaud, F. Keller, and C.P. Rinsland, "New high resolution analysis of the 3n3 and 2n1+n3 bands of nitrogen dioxide (NO2) by Fourier transform spectroscopy", J. Molec. Spectrosc., 201, 134–142, 2000.
- Stiller, G.P.; M.R. Gunson, L.L. Lowes, M.C. Abrams, O.F. Raper, C.B. Farmer, R. Zander, and C.P. Rinsland, "Stratospheric and mesospheric pressure-temperature profiles from rotational analysis of CO2 lines in Atmospheric Trace Molecule Spectroscopy/ATLAS1 infrared solar occultation spectra", J. Geophys. Res., 100, 3107–3117, 1995.
- Stiller, G.P.; T. von Clarmann, A. Wegner, M. Baumann, E. Frank, and H. Oelhaf, "Retrieval of tropospheric versus stratospheric partitioning of HCl from ground-based MIPAS FTIR spectra", J. Quant. Spectrosc. Radiat. Transfer, 54, 899–912, 1995.
- Strahan, S.E.; J.R. Podolske, T.E. Blackburn, and M. Loewenstein, "CO mixing ratios over tropical Australia obtained with a new airborne laser spectrometer", Workshop on Tropospheric Ozone and Quadrennial Ozone Symposium, Abstracts, 175, 1988.
- Strahan, S.E.; M. Loewenstein, J.R. Podolske, W.L. Starr, M.H. Proffitt, and K.K. Kelly, "Correlation of N₂O and ozone in the southern polar vortex during the airborne Antarctic ozone experiment", Polar Ozone Workshop, Session V, May 1988.
- Sussmann, R. et al., "Infrared spectroscopy of tropospheric trace gases: combined analysis of horizontal and vertical column abundances", Appl. Opt., 36, 735–741, 1997.
- Sussmann, R.; "Ground-based Fourier transform spectrometry at the NDSC site Zugspitze: Geophysical products for satellite validation", in Proceedings of the European Symposium on Atmospheric Measurements from Space, ESTEC, Noordwijk, The Netherlands, 18-22 Jan 1999, WPP-161, Vol. 2, 661–664, 1999.
- Toon, G.C.; C.B. Farmer, and R.H. Norton, "Detection of stratospheric N₂O₅ by infrared remote sounding", Nature, **319**, 570–571, 1986.
- Toon, G.C.; C.B. Farmer, L.L. Lowes, P.W. Schaper, J.F. Blavier, and R.H. Norton, "Infrared aircraftmeasurements of stratospheric composition over Antarctica during September 1987", Polar Ozone Workshop, Session IV, May 1988., J. Geophys. Res., 94, 16571–16596, 1989.
- Toon, G.C.; C.B. Farmer, P.W. Schaper, J.-F. Blavier, and L.L. Lowes, "Ground-based infrared measurements of tropospheric source gases over Antarctica during the 1986 austral spring", J. Geophys. Res., 94(D9), 11613–11624, 1989.
- Toon, G.C.; Jet Propulsion Laboratory, e-mail: toon@mark4sun.jpl.nasa.gov, priv. comm, 2001: the quoted linelist is a refined version of the linelist given by [Livingston & Wallace, 1991.
- Toon, G.C.; "The JPL MkIV Interferometer", Optics and Photonics News, 2, 19–21, 1991.
- Toon, G.C.; C.B. Farmer, P.W. Schaper, L.L. Lowes, and R.H. Norton, "Composition measurements of the 1989 arctic winter stratosphere by airborne infrared solar absorption spectroscopy", J. Geophys. Res., 97, 7939–7961, 1992.
- Toon, G.C.; C.B. Farmer, P.W. Schaper, et al., "Evidence for Subsidence in the 1989 Arctic Winter Stratosphere from Airborne Infrared Composition Measurements", J. Geophys. Res., 97, 7963–7970, 1992.
- Toon, G.C.; J.-F. Blavier and J.T. Szeto, Latitude variations of stratospheric trace gases, Geophys. Res. Lett., 21, 2599–2602, 1994.
- Toon, G.C.; J.-F. Blavier, B. Sen, R.J. Salawitch, G.B. Osterman, J. Notholt, M. Rex, C. T. McElroy, and J.M. Russell-III, "Ground-based observations of Arctic ozone loss during spring and summer 1997", J. Geophys. Res., 104, 26497–26510, 1999.
- Torr, D.G.; M.R. Torr, W. Swift, J. Fennelly, and G. Liu, "Measurements of OH (X2p) in the stratosphere by high-resolution UV spectroscopy", Geophys. Res. Lett., 14, 937–940, 1987.

- Torr, M.R. and D.G. Torr, "Imaging spectrometer for high-resolution measurements of stratospheric trace constituents in the ultraviolet", Appl. Opt., 27, 619–626, 1988.
- Traub, W.A.; D.G. Johnson, and K.V. Chance, "Stratospheric hydroxyl measurements", Science, 247, 446–449, 1990.
- Traub, W.A.; K.W. Jucks, D.G. Johnson, M.T. Coffey, W.G. Mankin and G.C. Toon, "Comparison of column abundances from three infrared spectrometers during AASE2", Geophys. Res. Lett., 21, 2591– 2594, 1994.
- Turatti, F.; D.W.T. Griffith, S.R. Wilson, M.B. Esler, T. Rahn, H. Zhang, G. Blake, and M. Wahlen, "Positionally dependent ¹⁵N fractionation factors in the photolysis of N2O determined by high resolution FTIR spectroscopy", Geophys. Res. Lett., 27(16), 2489–2492, 2000.
- Vercheval, J.; C. Lippens, C. Muller, M. Ackerman, M.P. Lemaitre, J. Besson, A. Girard, and J. Laurent, "CO₂ and CO vertical distribution in the middle atmosphere and lower thermosphere deduced from infrared spectra", Annales Geophysicae, 4, 161–164, 1986.
- Vernazza, J.E.; E.H. Avrett, and R. Loeser, "Structure of the solar chromosphere Models of the EUV brightness components of the quiet-sun", The Astrophysical Journal Supplement Series, 45, 635–725, 1981.
- Wagner, G. and M. Birk, "New Infrared Spectroscopic Database for Chlorine Nitrate", HITRAN Special Issue, J. Quant. Spectrosc. Radiat. Transfer, 82, numbers 1-4, 2003.
- Wahner, A.; R.O. Jakoubek, A.R. Ravishankara, G.H. Mount, and A.L. Schmeltekopf, "Near UV atmospheric absorption measurements from the DC-8 aircraft during the 1987 airborne Antarctic ozone experiment", Polar Ozone Workshop, Session IV, May 1988.
- Wallace, L. and W. Livingston, "Spectroscopic observations of atmospheric trace gases over Kitt Peak 1. Carbon dioxide and methane from 1979 to 1985", J. Geophys. Res., 95, 9823–9827, 1990.
- Wallace, L. and W. Livingston, "Spectroscopic observations of atmospheric trace gases over Kitt Peak 2. Nitrous oxide and carbon monoxide from 1979 to 1985, J. Geophys. Res., 95, 16383–16390, 1990.
- Wallace, L. and W. Livingston, "Spectroscopic observations of atmospheric trace gases over Kitt Peak. 3. The long-term trends of hydrogen chloride and hydrogen fluoride from 1978 to 1990", J. Geophys. Res., 96, 15513–15522, 1991.
- Wallace, L. and W. Livingston, "The effect of the Pinatubo cloud on Hydrogen Chloride and Hydrogen Fluoride", Geophys. Res. Lett., 19, 1209, 1992.
- Waters, J.W.; R.A. Stachnik, J.C. Hardy, and R.F. Jarnot, "ClO and O₃ stratospheric profiles: balloon microwave measurements", Geophys. Res. Lett., 15, 780–783, 1988.
- Webster, C.R. and R.D. May, "Simultaneous in situ measurements and diurnal variations of NO, NO₂, O₃, NO₂, CH₄, H₂O and CO₂ in the 40 to 26km region using an open path tunable diode laser spectrometer", J. Geophys. Res., 92, 11931–11950, 1987.
- Webster, C.R.; R.D. May, R. Toumi, and J.A. Pyle, "Active nitrogen partitioning and nighttime formation of N₂O₅ in the stratosphere: Simultaneous in situ measurements of NO, NO₂, HNO₃, O₃ and N₂O using the BLISS diode laser spectrometer", J. Geophys. Res., 95, 13851–13866, 1990.
- Wegner, A.; G.P. Stiller, T. von Clarmann, G. Maucher, T. Blumenstock, P. Thomas, "Denitrification and chlorine activation as monitored by ground-based FTIR solar absorption measurements", J. Geophys. Res., 103(D17), 22181–22200, 1998.
- Yang, A.; G.C. Toon, J.S. Margolis, P.O. Wennberg, "Atmospheric CO2 retrieved from ground-based near IR spectra", Geophys. Res. Lett., 29(9), doi:10.1029/2001GL014537, 2002.
- Yashcov, D.; A. Steen, T. Blumenstock, P. Thomas, "Column Amounts of ClONO2, HCl, HNO3, and HF from Ground-Based FTIR Measurements at Kiruna (Sweden) during Winter 1999", Proceedings of the Fifth European Workshop on Polar Stratospheric Ozone, St. Jean Du Luz 1999, European Commission - Air pollution research report 73, 396–399, 2000.
- Yokelson, R.J.; D.W.T. Griffith, J.B. Burkholder, and D.E. Ward, "Accuracy and advantages of synthetic calibration of smoke spectra", in Optical Remote Sensing for Environmental and Process Monitoring, pp. 365-376, Air & Waste Management Association, Pittsburgh, 1996.
- Zafra, R.L. de; M. Jaramillo, A. Parrish, P. Solomon, B. Connor, and J. Barrett, "High concentrations of chlorine monoxide at low altitudes in the antarctic spring stratosphere: diurnal variation", Nature, 328, 408–411, 1987.

- Zafra, R.L. de; M. Jaramillo, J. Barrett, L. Emmons, P. Solomon, and A. Parrish, "Observed diurnal variation of anomalous ClO concentrations in the Antarctic spring stratosphere over McMurdo station", 1986 and 1987, Workshop on Tropospheric Ozone and Quadrennial Ozone Symposium, Abstracts, 56, 1988.
- Zafra, R.L. de; M. Jaramillo, J. Barrett, L. Emmons, P. Solomon, and A. Parrish, "Quantitative observations of the behavior of anomalous low altitude ClO in the Antarctic spring stratosphere, 1987", Polar OzoneWorkshop, Session IV, May 1988.
- Zander, R.; C.P. Rinsland, C.B. Farmer, L.R. Brown, and R.H. Norton, "Observation of several chlorine nitrate (ClONO2) bands in stratospheric infrared spectra", Geophys. Res. Lett., 13, 757–760, 1986.
- Zander, R.; C.P. Rinsland, C.B. Farmer, L.R. Brown, and R.H. Norton, "Observation of several chlorine nitrate (ClONO2) bands in stratospheric infrared spectra", Geophys. Res. Lett., 13, 757–760, 1986.
- Zander, R.; C.P. Rinsland, C.B. Farmer, and R.H. Norton, "Infrared spectroscopic measurements of halogenated source gases in the stratosphere with the ATMOS instrument", J. Geophys. Res., 92, 9836–9850, 1987.
- Zander, R.; C.P. Rinsland, C.B. Farmer, and R.H. Norton, "Infrared spectroscopic measurements of halogenated source gases in the stratosphere with the ATMOS instrument", J. Geophys. Res., 92, 9836–9850, 1987.
- Zander, R.; G. Roland, L. Delbouille, A.J. Sauval, C.B. Farmer, and R.H. Norton, "Column abundance and long-term trend of hydrogen chloride (HCl) above the Jungfraujoch station", J. Atmos. Chem., 5, 395–404, 1987.
- Zander, R.; G. Roland, L. Delbouille, A.J. Sauval, C.B. Farmer, and R.H. Norton, "Monitoring of the integrated column of hydrogen fluoride above the Jungfraujoch station since 1977 - the HF/HCl column ratio", J. Atmos. Chem., 5, 385–394, 1987.
- Zander, R.; G. Roland, L. Delbouille, A.J. Sauval, P. Marché, F. Karcher, M. Amoudei, and B. Dufour, "Concentration of hydrogen chloride and hydrogen fluoride measured during the MAP/GLOBUS campaign of September 1983", Planet. Space Sci., 35, 665–672, 1987.
- Zander, R.; C.P. Rinsland, C.B. Farmer, J. Namkung, R.H. Norton, and J.M. Russel III, "Concentrations of Carbonyl Sulfide and Hydrogen Cyanide in the free upper troposphere and lower stratosphere deduced fromATMOS/Spacelab3 infrared solar occultation spectra", J. Geophys. Res., 93(D2), 1669–1678, 1988.
- Zander, R.; C.P. Rinsland, C.B. Farmer, J. Namkung, R.H. Norton, and J.M. Russell-III, "Concentrations of carbonyl sulfide and hydrogen cyanide in the free upper troposphere and lower stratosphere deduced from ATMOS/Spacelab 3 infrared solar occultation spectra", J. Geophys. Res., 93, 1663–1678, 1988.
- Zander, R.; W.A. Matthews, J.P. Pommereau, and N. Iwagami, "Measurements of column abundances of NO₂ from the ground during the GLOBUSNOx campaign", Workshop on Tropospheric Ozone and Quadrennial Ozone Symposium, Abstracts, 159, 1988.
- **Zander, R.** and P. Demoulin, "Spectroscopic evidence for the presence of the ν_4 Q-branch of chlorine nitrate (ClONO₂) in groundbased infrared solar spectra", J. Atmos. Chem., **6**, 191–200, 1988.
- Zander, R.; P. Demoulin, D.H. Ehhalt, U. Schmidt, and C.P. Rinsland, "Secular increase in the total vertical column abundance of carbon monoxide above central Europe since 1950", J. Geophys. Res., 94, 11021– 11028, 1989.
- Zander, R.; M.R. Gunson, J.C. Foster, C.P. Rinsland, and J. Namkung, "Stratospheric ClONO₂, HCl, and HF concentration profiles derived from ATMOS Spacelab 3 observations: An update", J. Geophys. Res., 95, 20519–20525, 1990.
- Zander, R.; C.P. Rinsland, D.H. Ehhalt, J. Rudolph, and P. Demoulin, "Vertical column abundances and seasonal cycle of acetylene, C₂H₂, above the Jungfraujoch station, derived from IR solar observations, J. Atmos. Chem., 13, 359–372, 1991.
- Zander, R.; C.P. Rinsland, and P. Demoulin, "Infrared spectroscopic measurements of the vertical column abundance of sulfur hexafluoride, SF₆, from the ground", J. Geophys. Res., 96, 15447–15454, 1991.
- Zander, R.; M.R. Gunson, C.B. Farmer, C.P. Rinsland, F.W. Irion, and E. Mahieu, "The 1985 chlorine and fluorine inventories in the stratosphere based on ATMOS observations at 30° north latitudes", J. Atmos. Chem., 15, 171–186, 1992.
- Zander, R.; E. Mahieu, and P. Demoulin, "Monitoring of stratospheric changes at the Jungfraujoch station by high-resolution IR solar observations in support of the Network for Detection of Stratospheric Change (NDSC)", in Proceedings of the colloquium "The Role of the Stratosphere in Global Change", Carqueiranne, France, September 14-25, 1992, NATO ASI Series, Vol. I 8, pp. 347-363, M.-L. Chanin Ed., Springer-Verlag Berlin Heidelberg, 1993.

- Zander, R.; C.P. Rinsland, E. Mahieu, M.R. Gunson, C.B. Farmer, M.C. Abrams, and M.K.W. Ko, "Increase of carbonyl fluoride (COF2) in the stratosphere and its contribution to the 1992 budget of inorganic fluorine in the upper stratosphere", J. Geophys. Res., 99, 16737–16743, 1994.
- Zander, R.; D.H. Ehhalt, C.P. Rinsland, U. Schmidt, E. Mahieu, J. Rudolph, P. Demoulin, G. Roland, L. Delbouille, and A.J. Sauval, "Secular trend and seasonal variability of the column abundance of N₂O above the Jungfraujoch station determined from IR solar spectra", J. Geophys. Res. 99, 16745–16756, 1994.
- Zander, R.; E. Mahieu, P. Demoulin, C.P. Rinsland, D.K. Weisenstein, M.K.W. Ko, N.D. Sze, and M.R. Gunson, "Secular Evolution of the Vertical Column Abundances of CHClF2 (HCFC-22) in the Earth's Atmosphere Inferred from Ground-Based IR Solar Observations at the Jungfraujoch and at Kitt Peak, and Comparison with Model Calculations", J. Atmos. Chem., 18, 129–148, 1994.
- Zander, R.; E. Mahieu, P. Demoulin, C.P. Rinsland, D.K. Weisenstein, M.K.W. Ko, N. D. Sze, and M.R. Gunson, "Secular evolution of the vertical column abundances of CHClF2 (HCFC-22) in the Earth's atmosphere inferred from ground-based IR solar observations at the Jungfraujoch and at Kitt Peak, and comparison with model calculations", J. Atmos. Chem., 18, 129–148, 1994.
- Zander, R.; E. Mahieu, M.R. Gunson, M.C. Abrams, A. Y. Chang, M. Abbas, C. Aellig, A. Engel, A. Goldman, F.W. Irion, N. Kämpfer, H.A. Michelsen, M. J. Newchurch, C.P. Rinsland, R.J. Salawitch, G.P. Stiller, and G.C. Toon, "The 1994 northern midlatitude budget of stratospheric chlorine derived from ATMOS/ATLAS-3 observations", Geophys. Res. Lett., 23, 2357–2360, 1996.
- Zander, R.; S. Solomon, E. Mahieu, A. Goldman, C.P. Rinsland, M.R. Gunson, M.C. Abrams, A.Y. Chang, R.J. Salawitch, H.A. Michelsen, M.J. Newchurch, and G.P. Stiller, "Increase of stratospheric carbon tetrafluoride (CF4) based on ATMOS observations from space", Geophys. Res. Lett., 23, 2353–2356, 1996.
- Zander, R.; P. Demoulin, E. Mahieu, G. Roland, L. Delbouille, and C. Servais, "Total Vertical Column Abundances of Atmospheric Gases Derived from IR Remote Solar Observations made at the Jungfraujoch Station", in A Transport and Chemical Transformation of pollutants in the Troposphere@, Vol. 6 -Tropospheric Ozone Research, Istein Hov Ed., Springer-Verlag, Berlin Heidelberg New York, 413–425, 1997.
- Zander, R.; P. Demoulin, E. Mahieu, L. Delbouille, G. Roland, F. Mélen, C. Servais, M.De Mazière, and M.van Roozendael, "An overview of NDSC-related activities at the Jungfraujoch through high-resolution infrared solar observations", in Proceedings of the XXVIII Quadrennial Ozone Symposium, L'Aquila, Italy, September 12-21, 1996. R. Bojkov and G. Visconti (Eds): 1005–1008, 1998.
- Zander, R.; E. Mahieu, P. Demoulin, C. Servais, F. Mélen, G. Roland, and L. Delbouille, "Spectrometric Solar Observations at the Jungfraujoch for Long-term Atmospheric Monitoring", Actes du Colloque "Ozone dans la Troposphère: la Recherche et la Politique", Bruxelles, 26 June 1998. SSTC-D/1999/1191/3 : 69-76, 1999.
- Zander, R.; P.M. Midgley, and M.J. Kurylo, "The NDSC in support of satellite data validation and calibration", in Proceedings of the ESA "European Symposium on Atmospheric Measurements from Space", ESTEC-Nordwijk, The Netherlands, January 18-22, 1999. WPP-161, Vol. 2, 649–654, 1999.
- Zander, R.; "Experimental Studies of Atmospheric Changes and Contribution to the Study of the Earth's Atmosphere from Space (ATMOS)", Scientific Report Nr 2 to the OSTC Research Contract Nr. CG/DD/ 01D, 1–11, 1999.
- Zander, R.; E. Mahieu, F. Mélen, and J. Elkins, "An evaluation of the northern midlatitude tropopause heightening, based on N2O column abundance measurements above the Jungfraujoch", in Proceedings of the Fifth European Symposium on Stratospheric Ozone, St. Jean de Luz, France, September 27 -October 1, 1999. N. R. P. Harris, M. Guirlet and G. T. Amanatidis (Eds): 135–138, 2000.
- Zander, R.; E. Mahieu, P. Demoulin, C. Servais, and F. Mélen, "Long-term evolution of the loading of CH4, N2O, CO, CCl2F2, CHClF2 and SF6 above Central Europe during the last 15 years", in Proceedings of the Second International Symposium on Non-CO2 Greenhouse Gases - Scientific Understanding, Control and Implementation, Noordwijkerhout, The Netherlands, September 8-10, 1999. Sp. Vol. Environmental Monitoring and Assessment, 2000. Kluwer Academic Publishers: 211–216, 2000.
- Zhao, Y.; Y. Kondo, F.J. Murcray, X. Liu, M. Koike, K. Kita, H. Nakajima, I. Murata, and K. Suzuki, "Carbon monoxide column abundances and tropospheric concentrations retrieved from high resolution ground-based infrared solar spectra at 43.5°N over Japan", J. Geophys. Res., 102, 23403–23411, 1997.
- Zhao, Y.; Y. Kondo, X. Liu, "Carbon monoxide column abundance and tropospheric concentration retrieved from high resolution ground-based infrared solar spectra at 43.5° N over Japan", J. Geophys. Res., 102, 23403–23411, 1997.

- Zhao, Y.; Y. Kondo, X. Liu, M. Koike, H.Nakajima, I. Murata, F.J. Murcray, and K. Suzuki, Proc. Quadren. Ozone Symp. 1996, "Spectroscopic measurements of carbon monoxide at 34.5° N and 43.5° N in Japan", 643–646, 1998.
- Zhao, Y.; Y. Kondo, F.J. Murcray, X. Liu, M. Koike, H. Irie, K. Strong, K. Suzuki, M Sera, and Y. Ikegami, "Seasonal variations of HCN over northern Japan measured by ground-based infrared solar spectroscopy", Geophys. Res. Lett., 27, 2085–2088, 2000.
- Zhao, Y.; Y. Kondo, F.J. Murcray, X. Liu, M. Koike, H. Irie, K. Suzuki, M. Sera, and Y. Ikegami, "Seasonal variations of HCN over northern Japan measured by ground-based infrared solar spectroscopy", Geophys. Res. Lett., 27, 2085–2088, 2000.
- Zhao, Y.; K. Strong, Y. Kondo, M. Koike, Y. Matsumi, H. Irie, C.P. Rinsland, N.B. Jones, K. Suzuki, H. Nakajima, H. Nakane, and I. Murata, "Spectroscopic Measurements of Tropospheric CO, C2H6, C2H2, and HCN in Northern Japan", J. Geophys. Res., 107(D18), 4343, doi: 10.1029/2001JD000748, 2002.
- Zirin, H.; "Astrophysics of the Sun", Cambridge Univ. Press, 1988.
- Zou, Q. and P. Varanasi, "Laboratory Measurement of the Spectroscopic Line Parameters of Water Vapor in the 610 - 2100 and 3000 - 4500 cm⁻¹ Regions at Lower-Tropospheric Temperatures", HITRAN Special Issue, J. Quant. Spectrosc. Radiat. Transfer, 82, numbers 1-4, 2003.

The electronic supplement¹

The DVD-ROM contains the following data and software products:

- Simulated spectra from 500 to $4370cm^{-1}$ at 257.14cm OPD for the following 47 molecules: $BrNO_2$, CCl_2F_2 , CCl_3F , CCl_4 , CF_4 , $CFC11_3$, CH_3Cl , CHF_2Cl , ClO, $ClONO_2$, $COCl_2$, F142B, H_2O_2 , HO_2NO_2 , O_2 , SF6, C_2H_2 , C_2H_4 , C_2H6 , CH_4 , CO, CO_2 , COClF, COF_2 , H_2CO , H_2O , H_2S , HBr, HCl, HCN, HCOOH, HDO, HF, HI, HNO_3 , HO_2 , HOCl, N_2 , N_2O , N_2O_5 , NH_3 , NO, NO_2 , O_3 , OCS, OH, and SO_2 .
- Simulated spectra from 3950 to $9000cm^{-1}$ at 120.0cm OPD for the following 18 molecules: CH4, CO, CO₂, H₂O, H₂S, HBr, HCl, HDO, HF, HI, N₂O, NH₃, NO, NO₂, O₂, O₃, OCS, OH, SO₂.
- Simulated spectra for all isotopic forms of the molecules listed above.
- One spectrum each representing the sum of all single-molecule simulations for the 2 spectral intervals.
- Simulated spectra of CCl4, F134A, PAN, Acetone, C3H8, CCl2F2, CFC-113, and CH3COOH based on cross-sectional data.
- One set of full-resolution observed ground-based solar FTIR spectra from Kiruna.
- Observed and simulated spectra showing solar absorptions of non-terrestrial origin.
- Illustration of the effect of 14 different apodisation functions on a sharp ozone line.
- The OPUS-IRTM free spectra viewer for Windows operating systems from Bruker Optik GmbH.
- The spectroscopic linelists used in SFIT format (HITRAN 2000 and supplements²)
- The a-priori VMR profiles & model atmosphere used in the simulations and in the example retrievals.
- Executables of all specialised software used in the preparation of the atlas².
- The source code of selected software products².
- All spectra, observed and simulated, are provided in both the Bruker OPUS-IRTM and the Bomem GRAMSTM data formats.

 $^{^{1}}$ Please refer to the back cover whether you obtained a copy of the atlas with or without electronic supplement. Additional copies of the electronic supplement are available from the main author. See page 1 for contact details.

 $^{^{2}}$ Restrictions apply for some contents due to 3rd party consent requirement - please contact the main author for conditions and details of obtaining a decryption key.

Xdoes not contain the electronic supplement.contains the electronic supplement (1 DVD).

IRF Technical Report 048, April 2004, ISSN 0284-1738 (colour)