
SRS Annual Meeting Kiruna, March12th 2013

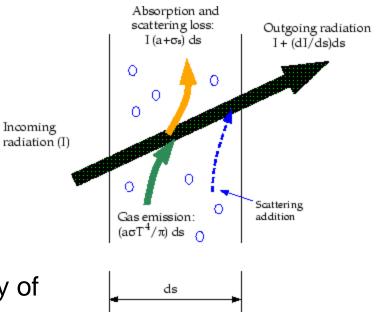
Jana Mendrok Luleå University of Technology

Contents

Intro Radiative Transfer – what is it? what for?

ARTS
 applications
 capabilities
 new features for planetary RT

> Summary



Intro

Radiative transfer (RT) / Propagation modeling?

what for do we do it?

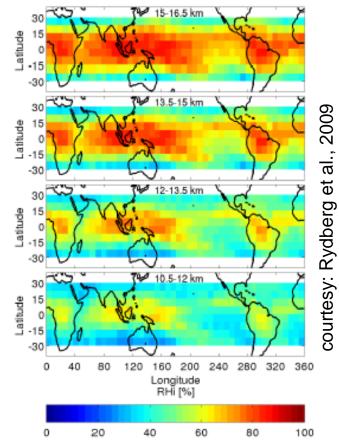
- predict signals: detectability of features/processes, measurability of parameters => instrument design, preparatory studies
- sensor calibration
- data analysis, retrieval

courtesy: ANSYS Inc. (https://www.sharcnet.ca/Software/Fluent12/ html/th/node111.htm)

Atmospheric Radiative Transfer Simulator

➤ applications

≻capabilities


➢new features for planetary RT

- (sub)mm-wave limb observations of Earth atmosphere for stratospheric chemistry
 preparatory sensor studies
 - ≻data analysis

⇒ Odin-SMR

⇒ JEM-SMILES

Odin-SMR multi-year means of (upper tropospheric) relative humidity

ARTS

focus (but not exclusively limited):

>mostly Earth atmosphere

>environmental and climate related applications

- basic philosophy:
 - > general and based on physical principles

(as far as feasible!)

- > modular, (easily) extendable
- flexible ("scripting language" control files as user interface)

SRS 2013

- (sub)mm-wave limb observations of Earth atmosphere for stratospheric chemistry
 - preparatory sensor studies
 - data analysis
- Data analysis
 - ➢ groundbased MW radiometers (O3, H2O, winds, …)
 - Upper tropospheric humidity (UTH) from MW & IR satellite sensors (climate monitoring)
- Validation
 - Radiosonde measurements
 - UTH from operational meteo satellites (Calib)

- examples of space science/astronomy applications:
 - "Characterization of the atmosphere above a site for millimeter wave astronomy" (DOI:10.1007/s10686-011-9214-9)
 - "Observing cosmic microwave background polarization through ice" (DOI:10.1111/j.1365-2966.2007.11464.x)
 - "Sub-millimeter observations of the terrestrial atmosphere during an Earth flyby of the MIRO sounder on the Rosetta spacecraft" (subm. to Plan. Space Sci.)

>80 papers (and counting) from ARTS applications

ARTS – Capabilities

- Polarization (1-4 Stokes elements)
- ➤ 1D, 2D or 3D
- ellipsoidal planet and surface topography
- all observation geometries allowed
- state-of-the-art absorption models (line-by-line (HITRAN & other catalogs) and various continua and full absorption models)
- Scattering (2 different methods available)
- > arbitrarily shaped, arbitrarily oriented (scattering) particles
- analytical or semi-analytical Jacobians

ARTS – What it can't do (yet?)

- no collimated beam source (solar source)
- no absorption models for UV/VIS

microwave to thermal infrared only

> non-LTE

- sophisticated surface models (also: no absent surface)
- extremely fast calculations (e.g. for broadband flux calculations)
- ≻ ..

Atmospheric Radiative Transfer Simulator

community model

ARTS – a community model

"Fathers" of the project

- **Oliver Lemke**

LULEÅ TEKNISKA UNIVERSITET **OCH UTBILDNING I VÄRLDSKLASS**

Stefan Buehler Patrick Eriksson

many more contributors/developers

- Cory Davis
- Claudia Emde
- Mattias Ekström
- Sreerekha T.R.
- Thomas Kuhn
- Richard Larsson

ARTS

The Atmospheric Radiative Transfer Simulator

- Axel von Engeln
- Mathias Milz
- Carlos Jimenez
- Daniel Kreyling
- Jana Mendrok
- and several more \succ

Atmospheric Radiative Transfer Simulator

community model

➢open source (GNU public license, C++)

>available from www.sat.ltu.se/arts/

ARTS

>available from www.sat.ltu.se/arts/

» SAT » ARTS

Satellite Atmospheric Science Group

Group Publications ARTS Projects Education Events Resources Sitemap Search

The Atmospheric Radiative Transfer Simulator

ARTS - The Atmospheric Radiative Transfer Simulator

- What is ARTS?
- * Science with ARTS
- Getting ARTS
- * Documentation / Support
- Related Tools
- Automated builds
- * Previous versions (ARTS 1.0)

News

Show all news

2012-05-07: Pont des Arts

ARTS

>available from www.sat.ltu.se/arts/

download & installation info

Group Publications ARTS Projects Education Events Resources Sitemap Search

Getting ARTS

Code of Conduct

If you use data generated by ARTS or Qpack in a scientific publication, then please mention this and cite the most appropriate of the ARTS publications that are summarized on the Documentation page.

Subversion Access

The latest stable ARTS version can be checked out through Subversion with the following command:

svn co https://www.sat.ltu.se/svn/rt/arts/branches/arts-2.0

Although we recommend to use Subversion to stay up to date with the latest changes, you can download a snapshot of ARTS from http://www.sat.ltu.se/arts/misc/download/stable/2.0/.

The latest development version can be checked out with:

svn co https://www.sat.ltu.se/svn/rt/arts/trunk arts

Although we recommend to use Subversion to stay up to date with the latest changes, you can download a snapshot of ARTS from http://www.sat.ltu.se/arts/misc/download/trunk/.

To build ARTS you need the following tools:

* cmake (>=2.8.3)

available from www.sat.ltu.se/arts/ documentation

Group Publications ARTS Projects Education Events Resources Sitemap Search

Documentation

Online Docs

Stable Version

Please note that the crosslinks between the PDF documents only work if you download all three books and save them in the same directory.

- * ARTS User Guide PDF: Guide for ARTS users.
- * ARTS Developer Guide PDF: Guide for ARTS developers.
- * ARTS Theory PDF: Describes the theoretical basis of many ARTS algorithms.
- ARTS built-in documentation browser: This is the preferred way of accessing the ARTS built-in documentation. It provides a browsable
 HTML version of the documentation including all workspace methods, variables, agendas and groups. You can also run it locally on your own
 computer with arts -s.

Development Version

- * ARTS User Guide: Guide for ARTS users.
- * ARTS Developer Guide: Guide for ARTS developers.
- * ARTS Theory: Describes the theoretical basis of many ARTS algorithms.
- ARTS built-in documentation browser

Articles

Going a step further: Planets

sophisticated, well-validated RT model

extend to further planets

Going a step further: Planets

- (Microwave) Propagation Toolbox for Planetary Atmospheres:
 - Radiative Transfer/Propagation Model
 - (upcoming slides: updates & upgrades)
 - Data Collection
 - \geq atmospheric scenarios for Earth, Mars, Venus, Jupiter (T, z, gas VMRs, cloud/dust fields, B, Ne)

SRS 2013

- > spectroscopic catalogue
- Cloud/dust optical properties

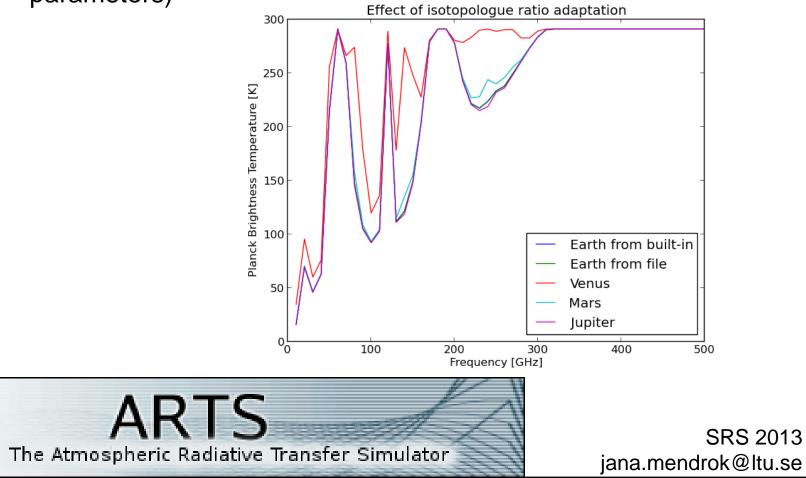
Radiative Transfer Model: generalisations for planetary applications

Radiative Transfer Model: generalisations for planetary applications – air = 79% N2 + 21% O2 ? Well, nope!

- Radiative Transfer Model: generalisations for planetary applications – air = 79% N2 + 21% O2 ? Well, nope!
 - ➤ spectroscopy
 - new catalogue format (pressure broadening and pressure shifts for 6 major species: N2, O2, CO2, H2, He, H2O)
 newly compiled catalogue

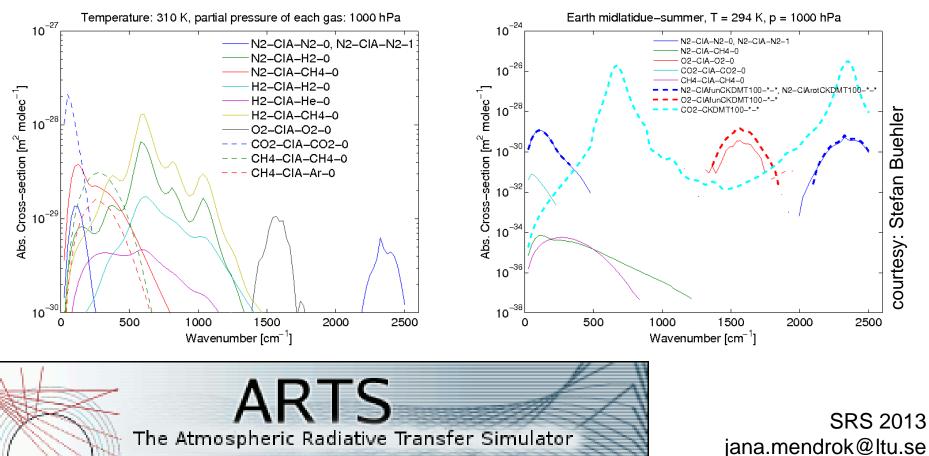
- Radiative Transfer Model: generalisations for planetary applications - air = 79% N2 + 21% O2 ? Well, nope!
 - > spectroscopy
 - > new catalogue format (pressure broadening and pressure shifts for 6 major species: N2, O2, CO2, H2, He, H2O) > newly compiled catalogue
 - line absorption
 - > pressure broadening and shifts acc. to actual air mixture

SRS 2013



- Radiative Transfer Model: generalisations for planetary applications – air = 79% N2 + 21% O2 ? Well, nope!
 - > spectroscopy
 - new catalogue format (pressure broadening and pressure shifts for 6 major species: N2, O2, CO2, H2, He, H2O)
 newly compiled catalogue
 - ➢ line absorption
 - pressure broadening and shifts acc. to actual air mixture
 - ➤ refraction
 - acc. to actual air mixture (considering 5 major species: N2, O2, CO2, H2, He; extendable)

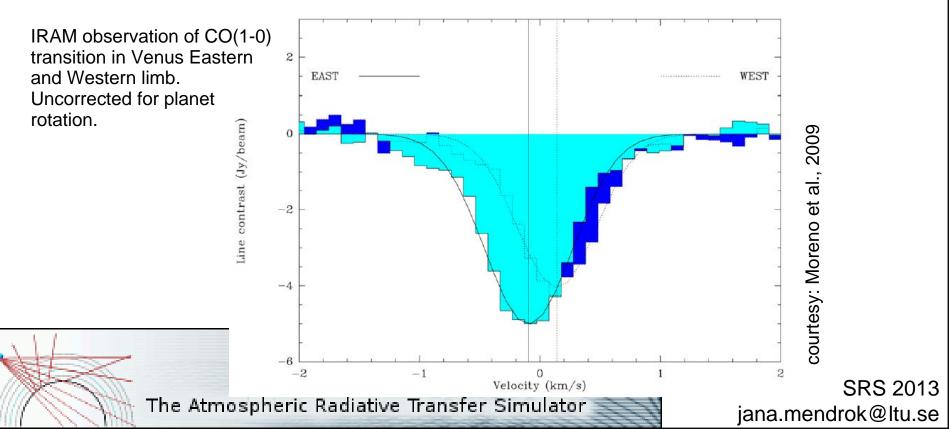
Radiative Transfer Model: generalisations for planetary applications


isotopologue ratios (de-hardwired; now a set of input parameters)

Radiative Transfer Model: new features

additional continuum models

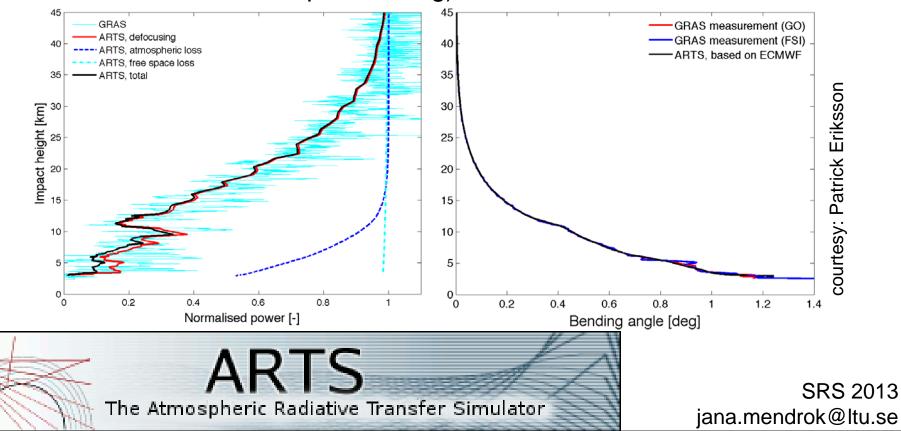
collision induced absorption (data source: HITRAN; particularly relevant in high-pressure atmospheres)



Radiative Transfer Model: new features

>Doppler shifts:

➤wind (up to 3D wind fields)


planet rotation (neglecting altitude dependency; relevant for full-disk obs., wind meas. at East/West limb)

Radiative Transfer Model: new features

>active measurement techniques:

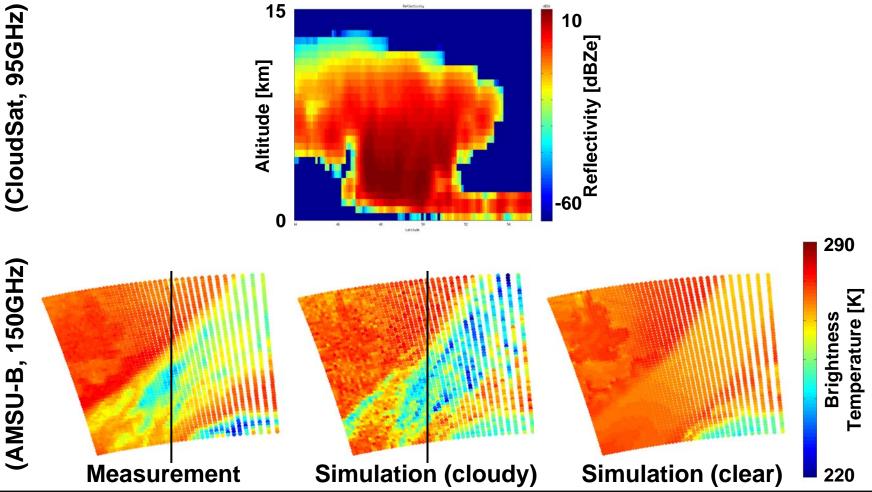
radio occultation (attenuation incl. atmo. and free space loss and defocusing, path delay/bending angles; transmitterto-receiver path tracing)

Radiative Transfer Model: new features

>active measurement techniques:

radio occultation (attenuation incl. atmo. and free space loss and defocusing, path delay/bending angles; transmitterto-receiver path tracing)

➤radio links


Cloud Radar

Radiometer

Radiative Transfer Model: new features

➤active measurement techniques:

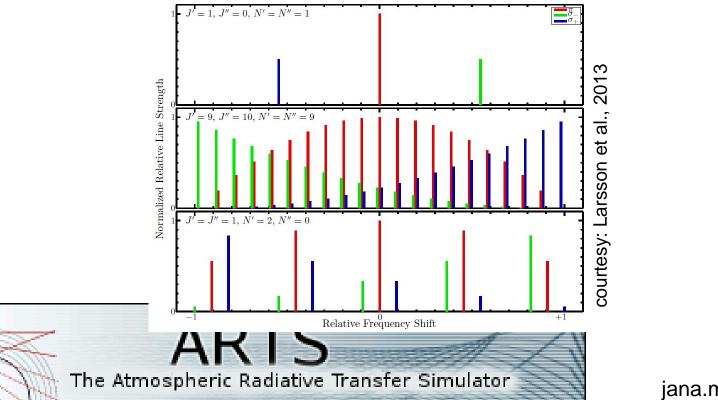
>cloud radar (reflectivity)

courtesy: Victoria Galligani & Patrick Eriksson

Radiative Transfer Model: new features

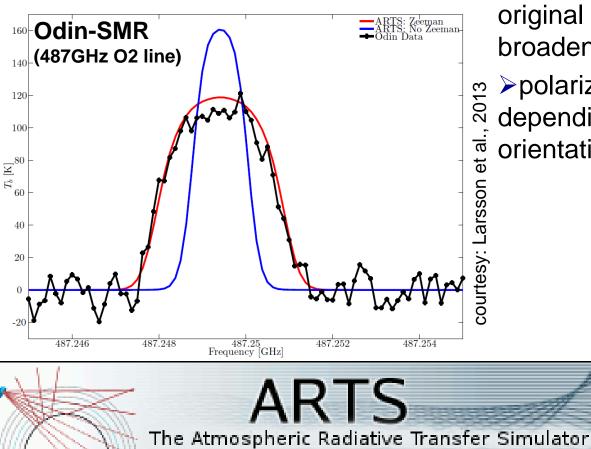
Free electron (ionospheric) effects

Refraction


Faraday rotation: polarization change due to charged particles (electrons) in presence of magnetic field

Radiative Transfer Model: new features

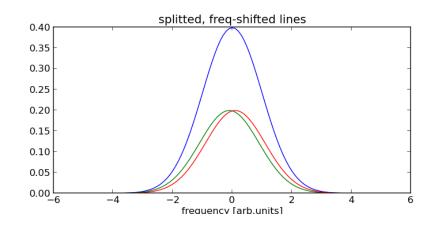
magnetic field effects


Zeeman splitting: splitting of an energy level (of a molecule/atom with total electron spin !=0) into several sublevels in interaction with external magnetic field

Radiative Transfer Model: new capabilities

magnetic field effects

Zeeman splitting:

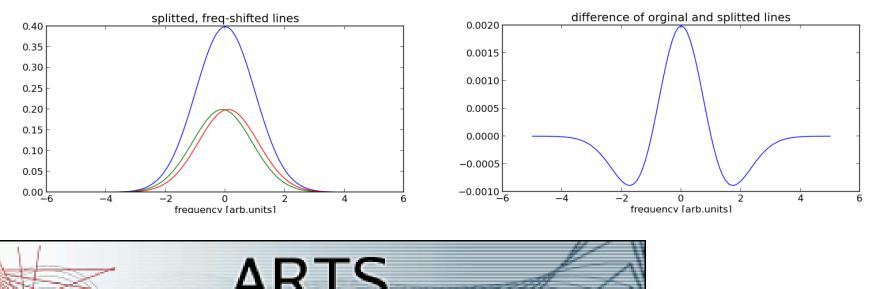

➤ splitting of an absorption line into sub-lines, shifted away from the original line position (virtual line broadening)

polarized absorption/emission, depending on magnetic field orientation

Radiative Transfer Model: new capabilities

>Zeeman splitting: measure magnetic field, e.g. Mars

Zeeman shift is small (few Hz/nT)



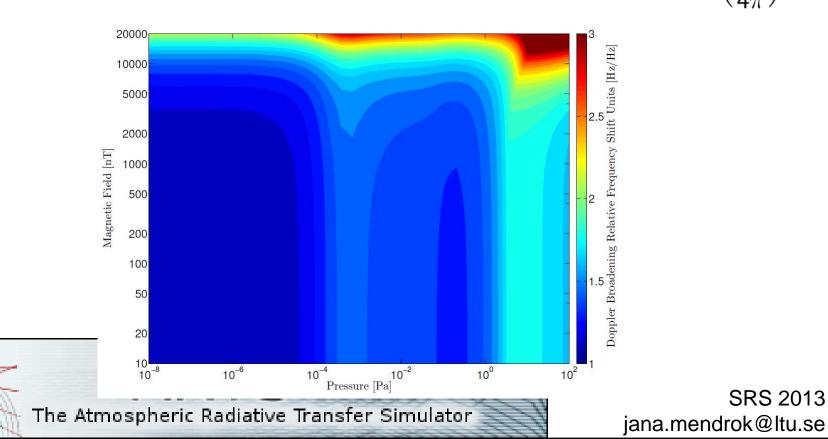
Radiative Transfer Model: new capabilities

Zeeman splitting: measure magnetic field, e.g. Mars

Zeeman shift is small (few Hz/nT)

> maximum signal difference at $(\nu_0 - \nu)^2 \approx (\Delta \nu_D)^2 + \left(\frac{\gamma}{4\pi}\right)^2$.

The Atmospheric Radiative Transfer Simulator


Radiative Transfer Model: new capabilities

 \geq Zeeman splitting: measure magnetic field, e.g. Mars

Zeeman shift is small (few Hz/nT)

> maximum signal difference at $(\nu_0 - \nu)^2 \approx (\Delta \nu_D)^2 + \left(\frac{\gamma}{\Lambda_{\pi}}\right)^2$.

SRS 2013

Summary

ARTS as a tool for planetary science (+space science, astronomy)

You're welcome!

➤ to apply ARTS for your projects

to contribute to development (or suggest/ request new features/applications)

www.sat.ltu.se/arts/

Acknowledgments: Planetary toolbox development financed by ESA.

