

PHOCUS Particle interactions in the polar summer mesosphere

Jonas Hedin

Department of Meteorology, Stockholm University (MISU)

The PHOCUS Team

- J. Gumbel, J. Hedin, M. Khaplanov, J. Stegman, G. Witt, P. Achtert, K. Hultgren, Department of Meteorology, Stockholm University (MISU), Sweden
- D. P. Murtagh, O. Nyström, Chalmers University of Technology, Göteborg, Sweden
- T. Ekebrand, Omnisys Instruments AB, Västra Frölunda, Sweden
- B. Strelnikov, A. Szewczyk, H. Asmus, G. Teiser, M. Rapp, Leibniz-Institute for Atmospheric Physics (IAP), Kühlungsborn, Germany
- S. Robertson, Z. Sternovsky, S. Dickson, University of Colorado, Boulder, CO, USA
- O. Havnes, S. V. Olsen, University of Tromsø, Tromsø, Norway
- M. Friedrich, Technical University Graz (TUG), Graz, Austria
- J. Arnault, S. Kirkwood, E. Belova, Institute for Space Physics (IRF), Kiruna, Sweden
- N. Mitchell, University of Bath, Bath, U.K.
- **S. Lossow**, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
- K. Jansson, Dept. of Materials and Environmental Chemistry, Stockholm Univ., Sweden

Outline

- **✓** Introduction
 - Scientific questions
 - the PHOCUS idea
 - **✓** Instrumentation
- **✓** Campaign
- **✓** Results
 - Some highlights
- **✓** Conclusion & Outlook

PHOCUS – Particles, Hydrogen and Oxygen Chemistry in the Upper Summer mesosphere

Aerosol particles & chemistry

(ice particles, meteoric smoke particles...)

Their **sources**,

the **properties** of the particle layers,

their interaction with various phenomena in the MLT

Instrumentation

Meteorologiska institutionen

IR photometers

✓O and H related airglow at 1.27/1.99 µm

NLC photometers

✓ Light scattering on ice particles at 220/440 nm

Front radiometer

✓ Water vapour at 557 GHz

IAP & U. Tromsø detectors

✓ Charged ice/smoke particles

MAGIC

✓ Particle sampling

Faraday & Probes

✓ Ions and electrons

Instrumentation

Meteorologiska institutionen

O- and H-probes

✓ Resonance fluorescence of atomic hydrogen (121.6 nm) and atomic oxygen (130.6 nm)

✓ Light scattering on ice particles at 121.6 nm

Side photometer

✓ Light scattering on ice particles at 220 nm

U. Colorado dust detectors

✓ Charged ice/smoke particles

Side radiometer

✓ Water vapour at 183 GHz

+ CONE in the rear (IAP)

 \checkmark T and ρ

Instrumentation

Ions, e, T, ρ:

Faraday rot., e and ion probes (TUG)

Chemistry

CONE (IAP)

UV resonance fluorescence:

- atomic oxygen (130.6 nm)

- atomic hydrogen (121.6 nm)

IR airglow photometry:

- O_2 IR A-band (1.27 µm)
- OH Meinel (\sim 2 µm)

Neutral smoke: 1 MAGIC unit

Charged particles:

Ice

particles

2 U. Colorado dust detectors and 2 Faraday Cups (IAP & UiT)

NLC photometry:

- brightness
- spectral dependence
- angle dependence
- polarisation

3 NLC photometers (2 front + 1 side)

Water vapour

Smoke

particles

Chalmers microwave experiment:

557 GHz forward channel 183 GHz sideways channel

Campaign

Esrange Space Center

Launch period:

July 6 – Aug. 5, 2011

Launch condition:

Daytime, presence of strong NLC seen by the lidar.

Launched:

July 21, 07:01 UT (09:01 LT)

Campaign

Meteorologiska institutionen

- ✓ We launched into an "aged" mesospheric ice layer near the end of its life cycle.
- ✓ The air between 80 and 90 km had been "well processed" by the ice layer.

Perfect for our sci. objectives

Some highlights...

Chemical characterisation of the NLC environment, MISU

 $O_2(^1\Delta)$ airglow photometer

O and H resonance fluorescence probes

OH airglow photometer

Meteorologiska institutionen

Some highlights...

Chemical characterisation of the NLC environment, MISU

NO from NLC photometer, H₂O from radiometer

Some highlights...

Simultaneous optical characterisation of NLC particles by spectral analysis, phase function analysis *and* polarisation

Some highlights...

Simultaneous optical characterisation of NLC particles by spectral analysis, phase function analysis *and* polarisation

Some highlights...

Simultaneous optical characterisation of NLC particles by spectral analysis, phase function analysis *and* polarisation

Some highlights...

First rocket-borne measurement of water vapour by

microwave radiometry, Chalmers

Some highlights...

First rocket-borne measurement of water vapour by microwave radiometry, Chalmers

Some highlights...

Multi-instrument analysis of neutral and charged particle layers

Charged particles

3 different impact detectors for charged ice/smoke particles IAP, U. Tromsø and U.Colorado (on the side)

Neutral particles, MISU NLC photometers (ice, front and side) (MAGIC particle sampler)

Some highlights...

Meteorologiska institutionen

Multi-instrument analysis of neutral and charged

Some highlights...

Multi-instrument analysis of neutral and charged

particle layers

Meteorologiska institutionen

- ✓ Very extensive case study
- Focused on particles and chemistry
- ✓ Valuable dataset

Outlook

Publish results in Special Issue "Smoke and Ice in the Mesosphere" in Journal of Atmospheric and Solar-Terrestrial Physics

- ✓ Summary of campaign and results (Gumbel et al.)
- ✓ Optical characterisation of noctilucent cloud particles (Khaplanov et al.)
- ✓ Chemical composition from Ox airglow photometry (Hedin et al.)
- ✓ Microwave measurements of water vapour in the vicinity of noctilucent clouds (Murtagh et al.)
- ✓ Charged particle detection and secondary charge production (Havnes et al.)
- ✓ Noctilucent clouds, charged particles and ionospheric conditions (Asmus et al.)
- ✓ Turbulent structures from in-situ and radar measurements (Szewczyk et al.)
- ✓ Direct particle sampling in the mesosphere (Hedin et al.)
- ✓ Smoke capture by ice particles (Gumbel et al.)

Submission deadline: June 30, 2013.

MaxiDUSTY-1 summer 2014

Norwegian sounding rocket campaign, ice/smoke particle charge state

MISU is invited and will contribute with

- ✓ NLC photometer
- ✓ Particle impact detector

...several different instruments studying charged mesospheric particles

Thank you

