

Sub-mm cloud ice sounding (ICI = Ice Cloud Imager)

Patrick Eriksson

Chalmers University of Technology (patrick.eriksson@chalmers.se)

Jana Mendrok and Stefan Buehler

Luleå University of Technology (Kiruna) (jana.mendrok@ltu.se)

Background

Earth's radiative balance Global annual mean values in W/m²

Heating

Cooling

(IPCC AR4, 2007)

Example on tropical deep convection

(From TWP-ICE, ARM Climate Research Facility)

Ice water content / path

Present knowledge

Comparison of IWP in climate models (AR4) Grey area is CloudSat ±40%

(Figure by from Eliasson et al., ACP, 2011)

CloudSat The first satellite-based cloud radar (94 GHz, launched 2006)

CloudSat Profile 2009-02-06T05:16:112/2009-02-06T05:17:58Z

- Main advantages
 - high spatial resolution, internal structures resolved
 - first global estimates of ice water content (IWC) (g/m³)
- Main limitations
 - measurement $\sim \sum r^6$ (while mass $\sim \sum r^3$)
 - across-track coverage just 1.3 km

Measurement principle and example results

Measurement principle, 1 Geometries

Passive observations

Swath width of $\sim\!1000\,km$

 Absorption by ice particles can be neglected

Measurement principle, 2 Frequencies

IWP response Particle size sampling 300 0.05 176.3 GHz 315.6 GHz 7 659.8 GHz 0.04 Brightness Temperature K 250 6 $-10 \ \mu m$ BT difference [K] ---- 94 GHz Radar 0.03 200 0.02 2 0.01 150 874 GHz 1 683 GHz 463 GHz 0 326 GHz 200 600 800 0 400 1000 1200 1400 100 mass equivalent sphere diameter [µm] 50 100 150 200 250 0 Ice Water Path(g/m~2)

"H₂O slicing" also applied

backscattering efficiency

Example on IWP response

(Figure by Eric Defer, LERMA, Paris)

UNIVERSITY OF TECHNOLOGY

15

Example on Odin-SMR and SMILES retrievals

CHALMERS UNIVERSITY OF TECHNOLOGY

Status

ICI and ISMAR

- Suggested during the 90s (A Gasiewski, F Evans ...)
- Some airborne measurements performed in US
- Several mission proposals, none successful
 - last proposals to ESA coordinated by Stefan

Ice Cloud Imager (ICI):

- Part of Metop second generation
- Launch around 2021
- Channels between 183 and 664 GHz
- Some dual polarisation (H and V)

ISMAR:

- An airborne instrument under development (UK Met)
- First measurements early 2014

Our present involvement

SB and PE member of ICI Science Advisory Group
no meeting yet!

Next ISMAR workshop in June

arranged by us, at Kristineberg (Lysekil)

Collaboration with SMHI started

- first EUMETSAT IWP ATBD written
- calculation of single scattering properties

SNSB project started Jan 1

• Chalmers + Kiruna (50% / 50%), 3 years

Example results

ARTS The Atmospheric Radiative Transfer Simulator

- A general forward model for longwave radiation,
- with focus on microwave applications

Main features:

- 1D, 2D or 3D, free observation geometry
- Reference ellipsoid used (no "flat Earth" restriction)
- Two modules for solving scattering (DOIT and MC)
- Full polarisation (Stokes 1-4)
- Now also other planets and radio link budgets

Impact of ENSO Based on results from Odin-SMR

CHALMERS

Determining the average response of convection

 Each plot covers 1200 km x 1200 km, and is a 3 h average

Summary

A dedicated space mission now started: ICI
decision partly based on Swedish efforts

Now focus on airborne instrument: ISMAR
workshop in June

- Main issues:
 - derive and use more realistic single scattering properties
 - perform 3D simulations, to check impact of horizontal cloud structures

