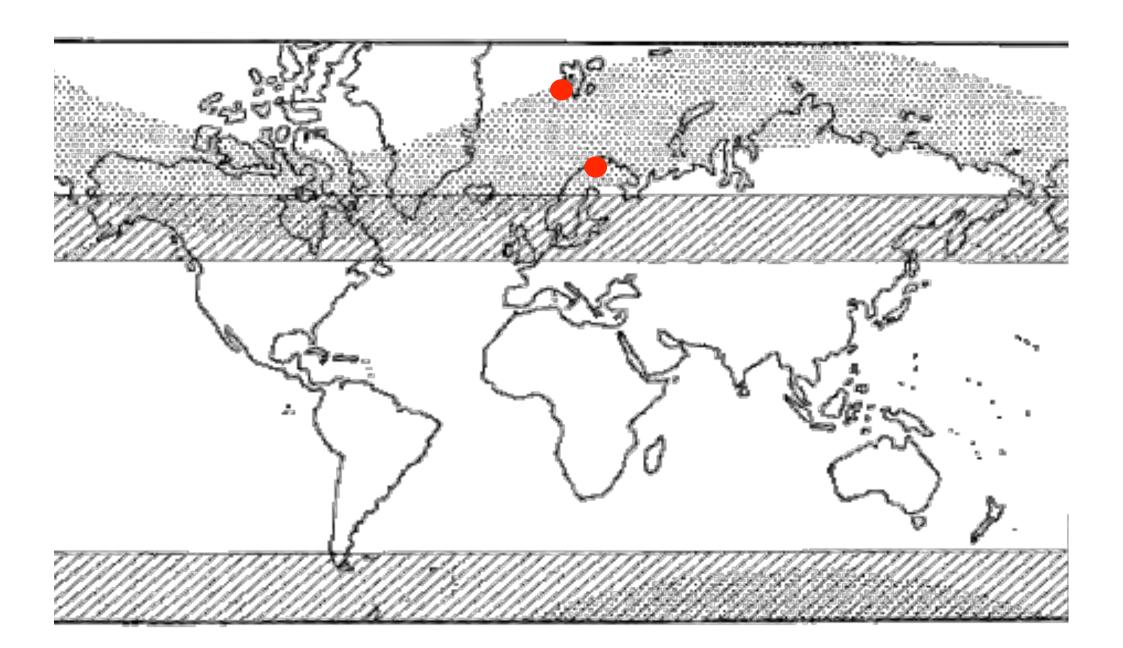
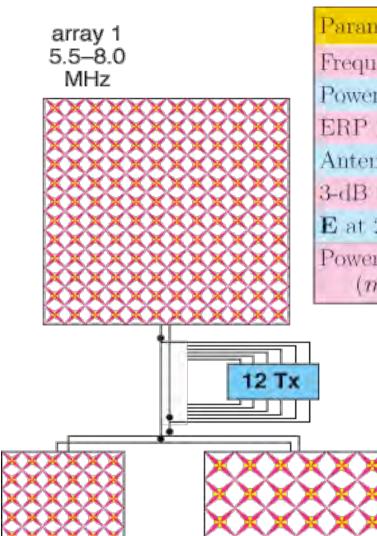


EISCAT Radar School Kiruna 2005

by

Cesar La Hoz





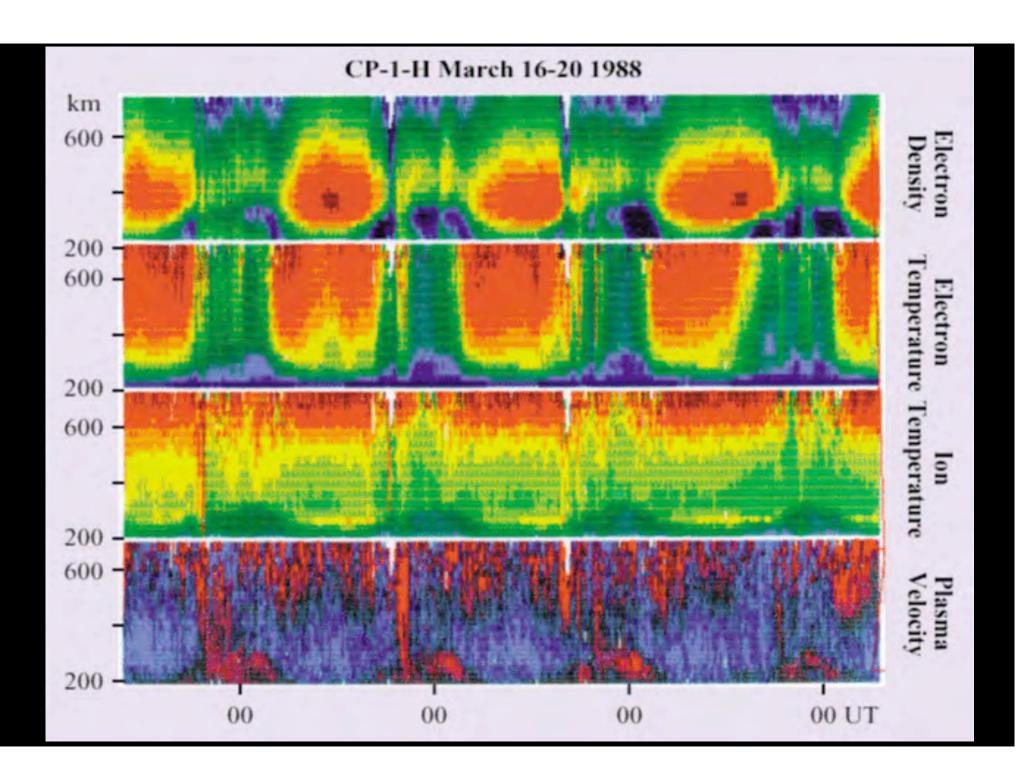
array 3 5.5–8.0 MHz

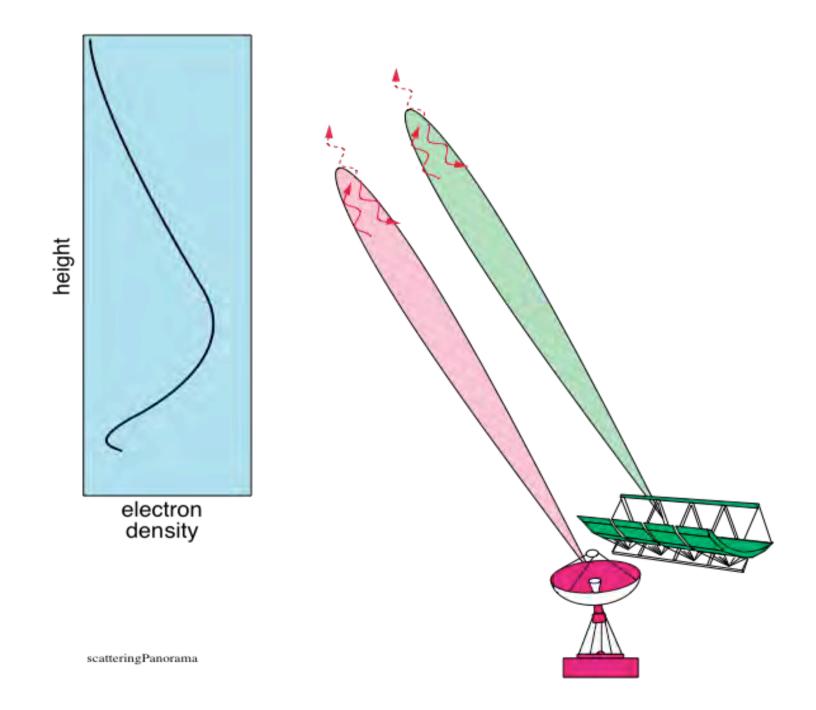
Parameter	Trans.	Array 1	Array 2	Array
Frequency (MHz)	2.7 - 8.0	5.5 - 8.0	4.0 5.5	5.5 8.0
Power (kW)	12×100			
ERP(MW)		1200	300	300
Antenna gain (dB)		30	24	24
3-dB Beam width		7.50	14.5°	14.5°
E at 250 $km \ (Vm^{-1})$. 1	0.5	0.5
Power at 250 km (mWm^{-2})		1.6	0.4	().4

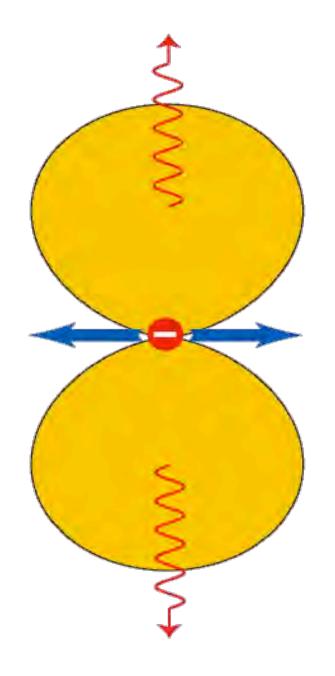
array 2 3.85–5.65

MHz

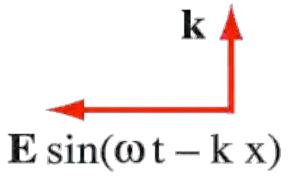
The Tromsø Heating Facility



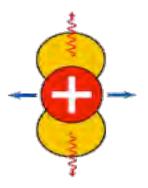




electron



ion



$$\frac{\sigma_{ion}}{\sigma_{ele}} = \left(\frac{m_{ele}}{m_{ion}}\right)^2$$

AVIATION WEEK & SPACE TECHNOLOGY

A McGRAW-HILL PUBLICATION \$5.00

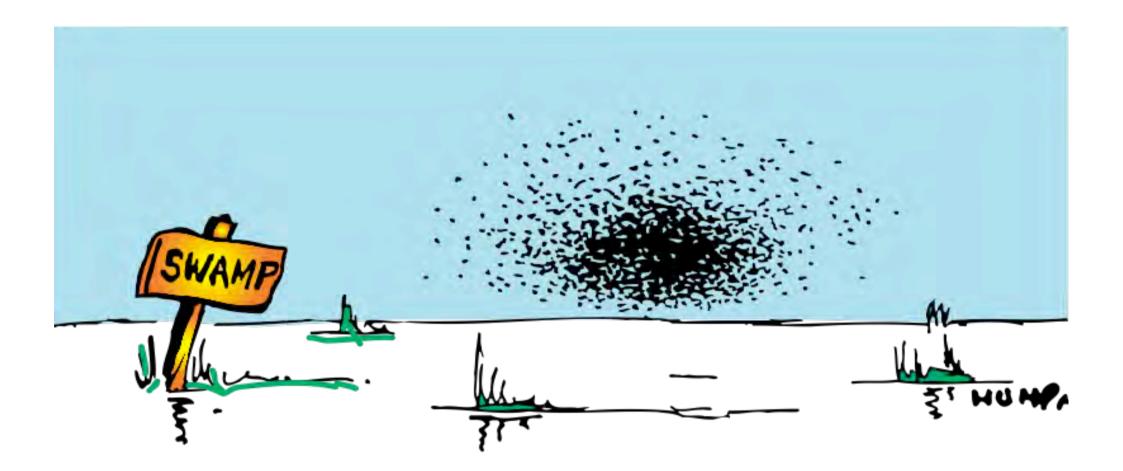
APRIL 9, 1990

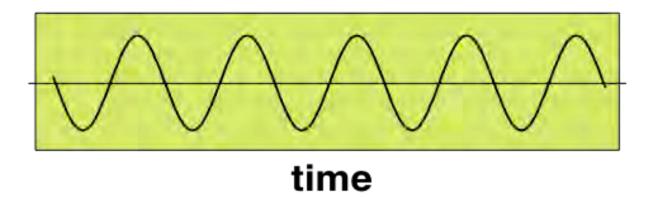
AIR FORCE F-117A MOVES OUT OF THE BLACK

PAGE 36

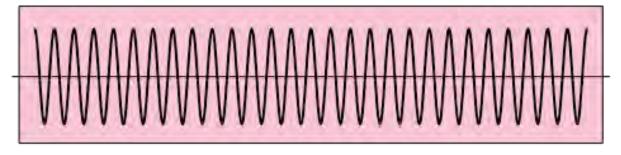
NORTHWEST AIRLINES: DEVELOPING NEW IMAGE PAGE 64

SOVIET MILITARY SPACE: MODERNIZING ORBITAL ASSETS PAGE 44

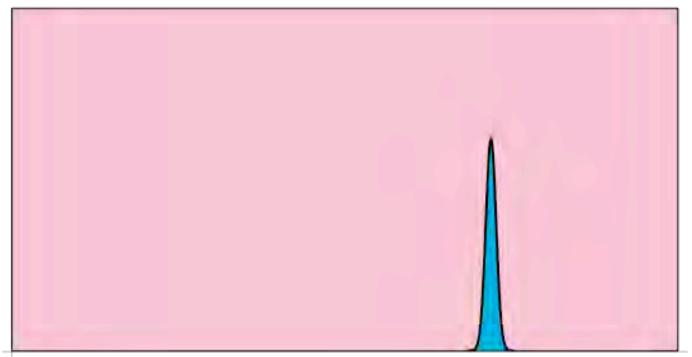




frequency

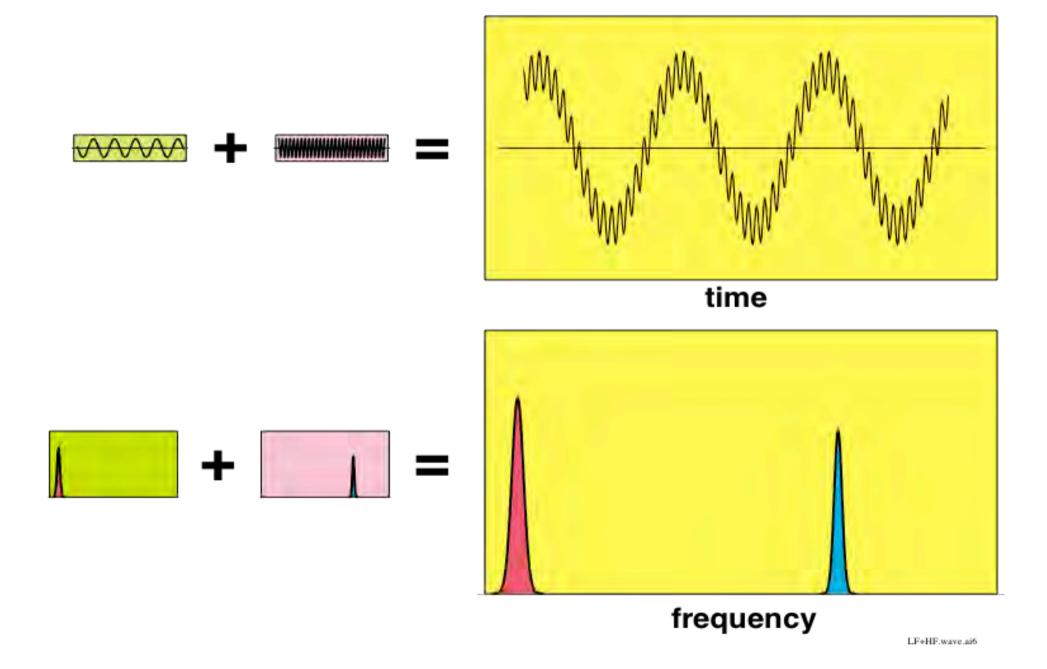


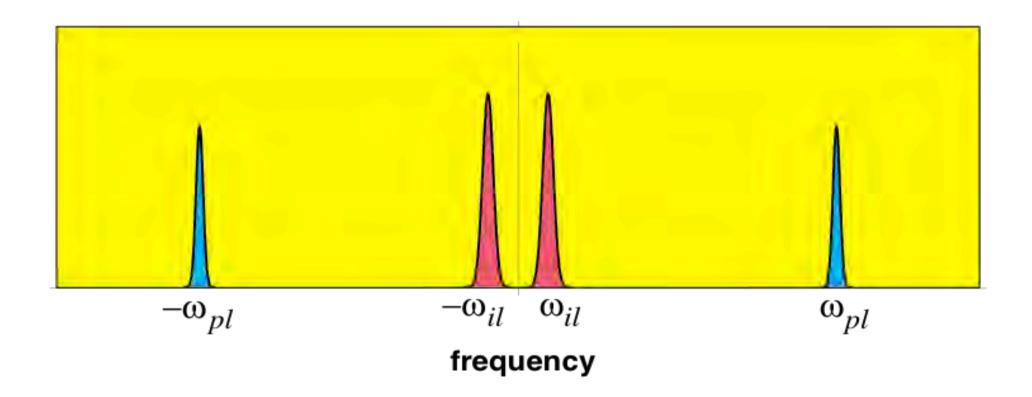
time



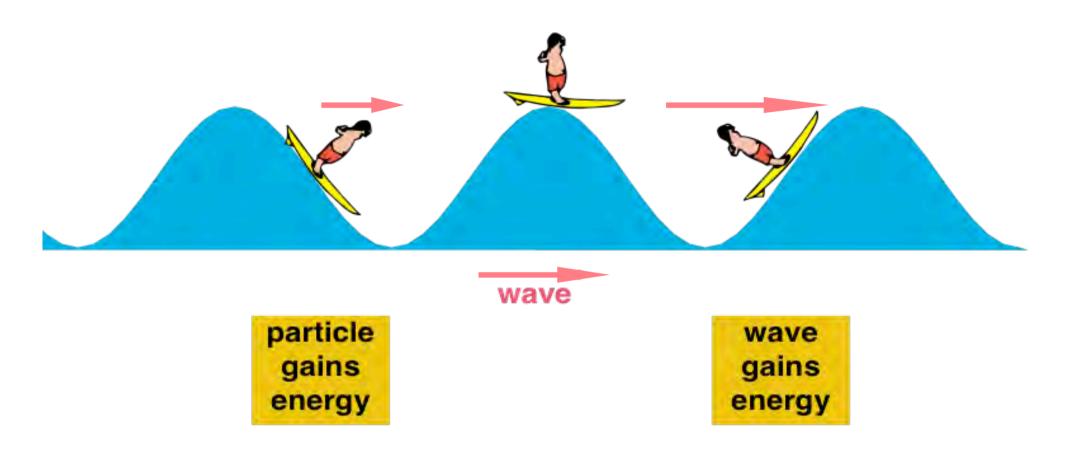
frequency

HFsine.ai

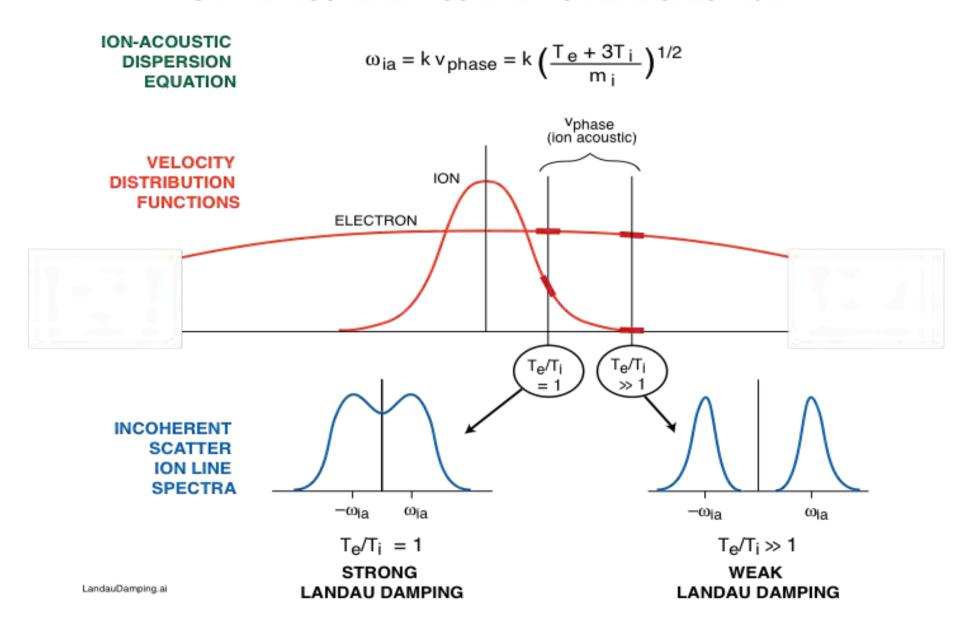


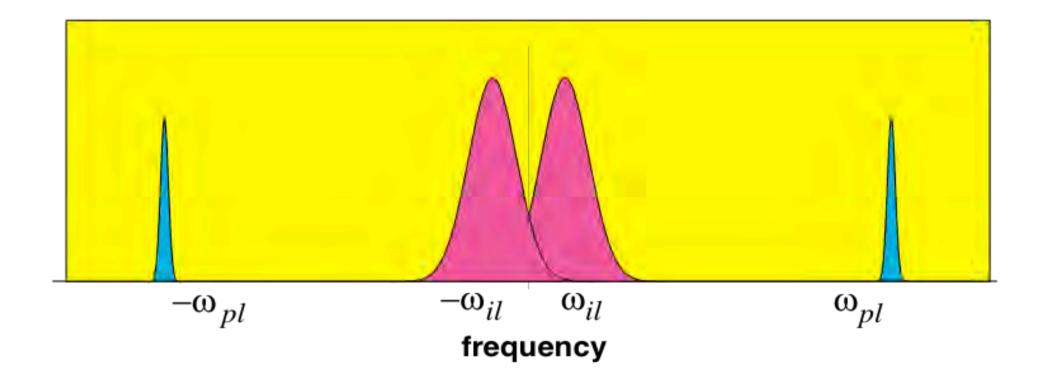


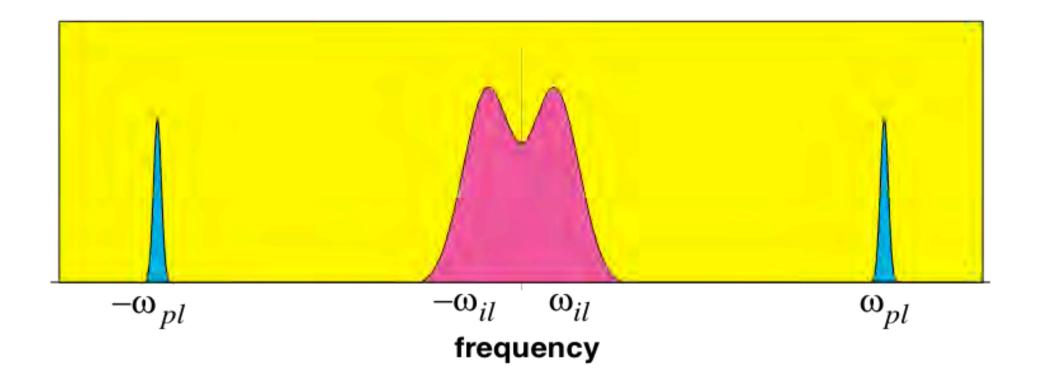
Landau wave-particle interactions

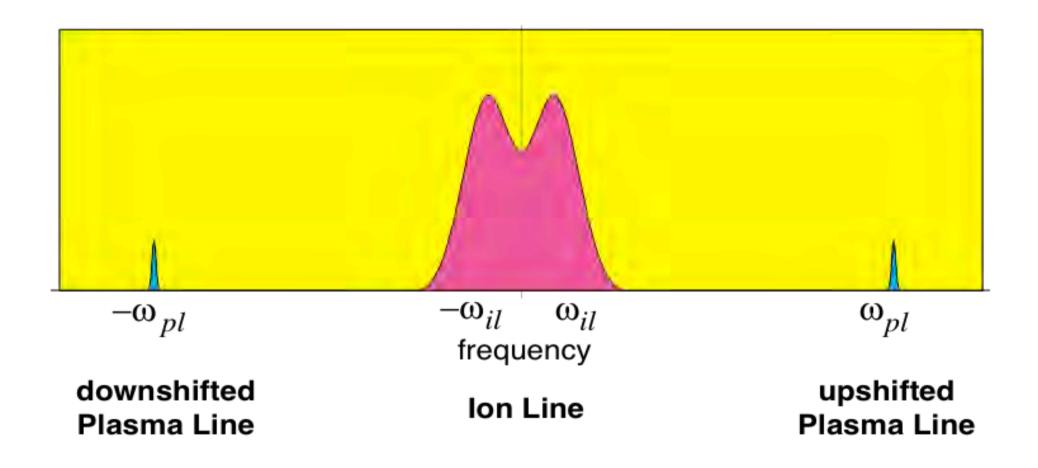


THE EFFECT OF LANDAU DAMPING ON THE INCOHERENT SCATTER ION LINE SPECTRUM









Incoherent Scattering Spectrum

$$S_e(\mathbf{k},\omega) = N_e \left| 1 - \frac{\chi_e(\mathbf{k},\omega)}{\epsilon(\mathbf{k},\omega)} \right|^2 \!\! \int d\mathbf{v} f_e(\mathbf{v}) \delta(\omega - \mathbf{k} \cdot \mathbf{v}) + N_t \left| \frac{\chi_e(\mathbf{k},\omega)}{\epsilon(\mathbf{k},\omega)} \right|^2 \!\! \int d\mathbf{v} f_t(\mathbf{v}) \delta(\omega - \mathbf{k} \cdot \mathbf{v})$$

electric susceptibility $\chi_{e,i}(\mathbf{k},\omega)$ dielectric constant function $\epsilon(\mathbf{k},\omega)$ velocity distribution function $f_{e,i}(\mathbf{v})$

$$\epsilon(\mathbf{k},\omega) = 1 + \sum_{\alpha} \chi_{\alpha}(\mathbf{k},\omega)$$

$$\chi_q(\mathbf{k},\omega) = \frac{\omega_{pq}^2}{k^2} \int \frac{\mathbf{k} \cdot \partial_v f_o(\mathbf{v})}{\omega - \mathbf{k} \cdot \mathbf{v}} d^3 \mathbf{v}$$

PS. SpecFormula Lai6

Ion Line $S_{IL}\left(\mathbf{k},\omega\right)$

$$S_{\epsilon}(\mathbf{k},\omega) = N_{\epsilon} \left| 1 - \frac{\chi_{\epsilon}(\mathbf{k},\omega)}{\epsilon(\mathbf{k},\omega)} \right|^{2} \int d\mathbf{v} f_{\epsilon}(\mathbf{v}) \delta(\omega - \mathbf{k} \cdot \mathbf{v}) + N_{i} \left| \frac{\chi_{\epsilon}(\mathbf{k},\omega)}{\epsilon(\mathbf{k},\omega)} \right|^{2} \int d\mathbf{v} f_{i}(\mathbf{v}) \delta(\omega - \mathbf{k} \cdot \mathbf{v})$$

Ion Line $S_{IL}\left(\mathbf{k},\omega\right)$

$$S_{\epsilon}(\mathbf{k},\omega) = N_{\epsilon} \left| 1 - \frac{\chi_{\epsilon}(\mathbf{k},\omega)}{\epsilon(\mathbf{k},\omega)} \right|^{2} \int d\mathbf{v} f_{\epsilon}(\mathbf{v}) \delta(\omega - \mathbf{k} \cdot \mathbf{v}) + N_{i} \left| \frac{\chi_{\epsilon}(\mathbf{k},\omega)}{\epsilon(\mathbf{k},\omega)} \right|^{2} \int d\mathbf{v} f_{i}(\mathbf{v}) \delta(\omega - \mathbf{k} \cdot \mathbf{v})$$

$$\epsilon(\mathbf{k},\omega) = \mathbf{0}$$

$$\omega_{pl}(k) \approx \omega_{pe}(1 + 3\lambda_{D}^{2}k^{2})$$

$$\omega_{in}(k) \approx k \sqrt{\frac{T_{e} + 3T_{i}}{m_{i}}}$$

Ion Line $S_{IL}(\mathbf{k},\omega)$

$$S_{e}(\mathbf{k},\omega) = N_{e} \left[1 - \frac{\chi_{e}(\mathbf{k},\omega)}{\epsilon(\mathbf{k},\omega)}\right]^{2} \int d\mathbf{v} f_{e}(\mathbf{v}) \delta(\omega - \mathbf{k} \cdot \mathbf{v}) + N_{i} \left[\frac{\chi_{e}(\mathbf{k},\omega)}{\epsilon(\mathbf{k},\omega)}\right]^{2} \int d\mathbf{v} f_{i}(\mathbf{v}) \delta(\omega - \mathbf{k} \cdot \mathbf{v})$$

$$\epsilon(\mathbf{k},\omega) = 0$$

$$\omega_{pl}(\mathbf{k}) \approx \omega_{pe}(1 + 3\lambda_{D}^{2}k^{2})$$

$$\omega_{in}(\mathbf{k}) \approx k \sqrt{\frac{T_{e} + 3T_{i}}{m_{i}}}$$

$$\omega_{pl}$$

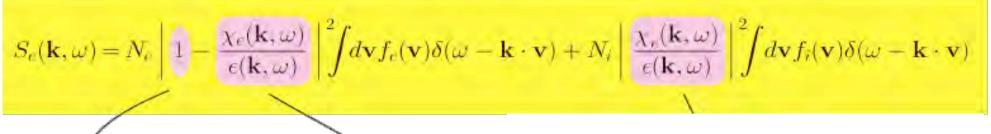
$$\omega_{pl}(\mathbf{k}) \approx 0$$

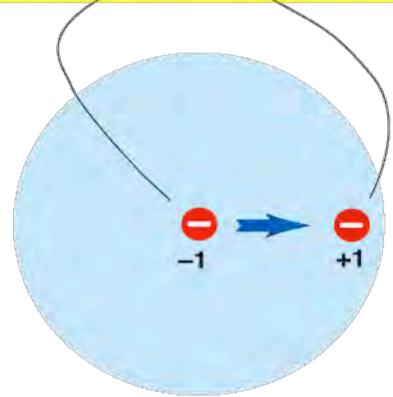
Ion Line $S_{IL}(\mathbf{k},\omega)$

$$S_{e}(\mathbf{k}, \omega) = N_{e} \left| 1 - \frac{\chi_{e}(\mathbf{k}, \omega)}{\epsilon(\mathbf{k}, \omega)} \right|^{2} \int d\mathbf{v} f_{e}(\mathbf{v}) \delta(\omega - \mathbf{k} \cdot \mathbf{v}) + N_{i} \left| \frac{\chi_{e}(\mathbf{k}, \omega)}{\epsilon(\mathbf{k}, \omega)} \right|^{2} \int d\mathbf{v} f_{i}(\mathbf{v}) \delta(\omega - \mathbf{k} \cdot \mathbf{v})$$

ion with cloud

Ion Line $S_{IL}(\mathbf{k},\omega)$

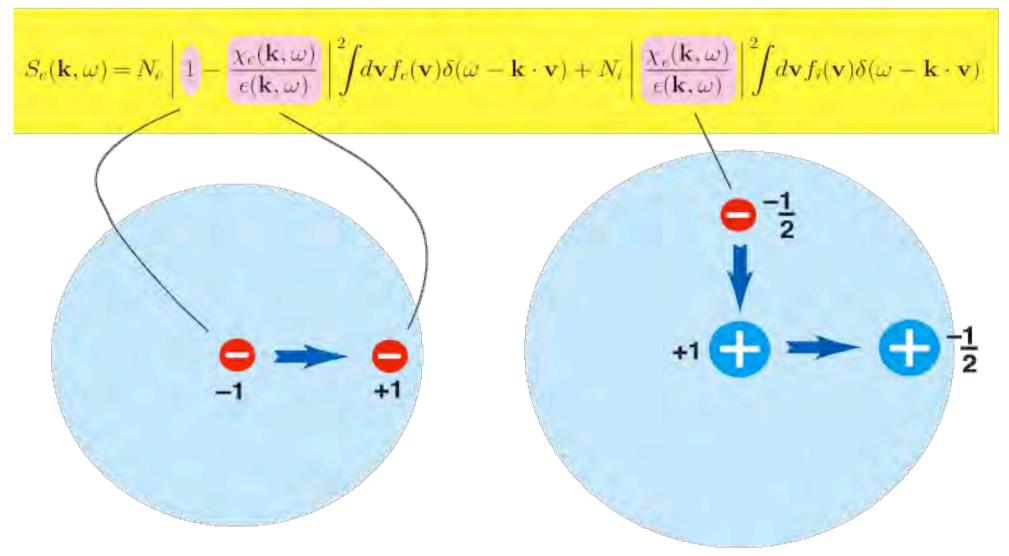




electron with cloud

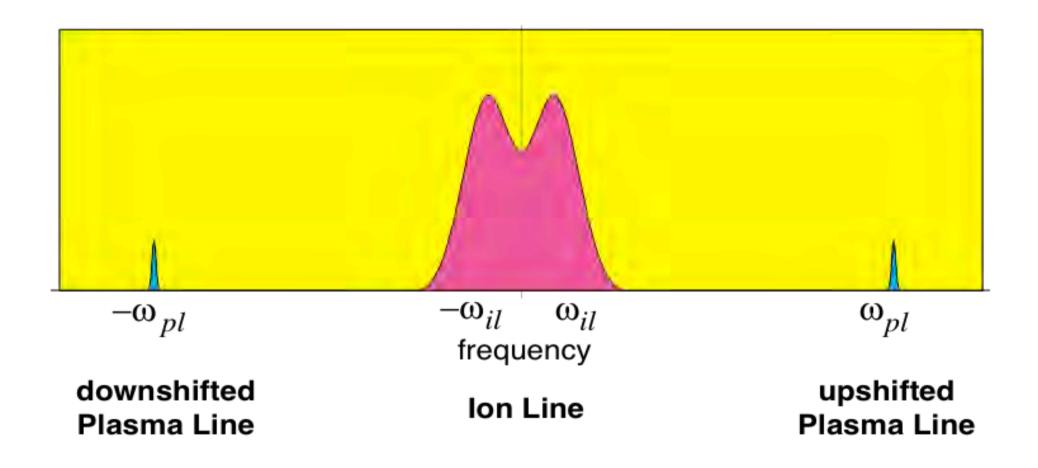
IS.SpecForunits.al.

Ion Line $S_{IL}(\mathbf{k},\omega)$



electron with cloud

ion with cloud



no collective interactions

$$S_{e}(\mathbf{k},\omega) = N_{e} \left| 1 - \frac{\chi_{e}(\mathbf{k},\omega)}{\epsilon(\mathbf{k},\omega)} \right|^{2} \int d\mathbf{v} f_{e}(\mathbf{v}) \delta(\omega - \mathbf{k} \cdot \mathbf{v}) + N_{i} \left| \frac{\chi_{e}(\mathbf{k},\omega)}{\epsilon(\mathbf{k},\omega)} \right|^{2} \int d\mathbf{v} f_{i}(\mathbf{v}) \delta(\omega - \mathbf{k} \cdot \mathbf{v})$$

no collective interactions

$$S_{e}(\mathbf{k},\omega) = N_{e} \left| 1 - \frac{\chi_{e}(\mathbf{k},\omega)}{\epsilon(\mathbf{k},\omega)} \right|^{2} \int d\mathbf{v} f_{e}(\mathbf{v}) \delta(\omega - \mathbf{k} \cdot \mathbf{v}) + N_{i} \left| \frac{\chi_{e}(\mathbf{k},\omega)}{\epsilon(\mathbf{k},\omega)} \right|^{2} \int d\mathbf{v} f_{i}(\mathbf{v}) \delta(\omega - \mathbf{k} \cdot \mathbf{v})$$

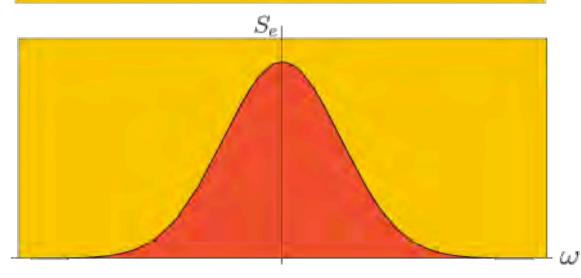
$$S_{e}(\mathbf{k},\omega) = N_{e} \int d\mathbf{v} f_{e}(\mathbf{v}) \delta(\omega - \mathbf{k} \cdot \mathbf{v})$$

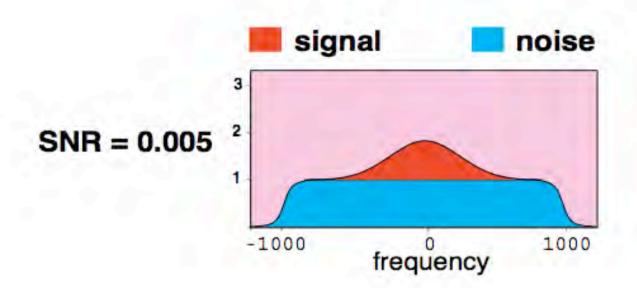
 S_{-}

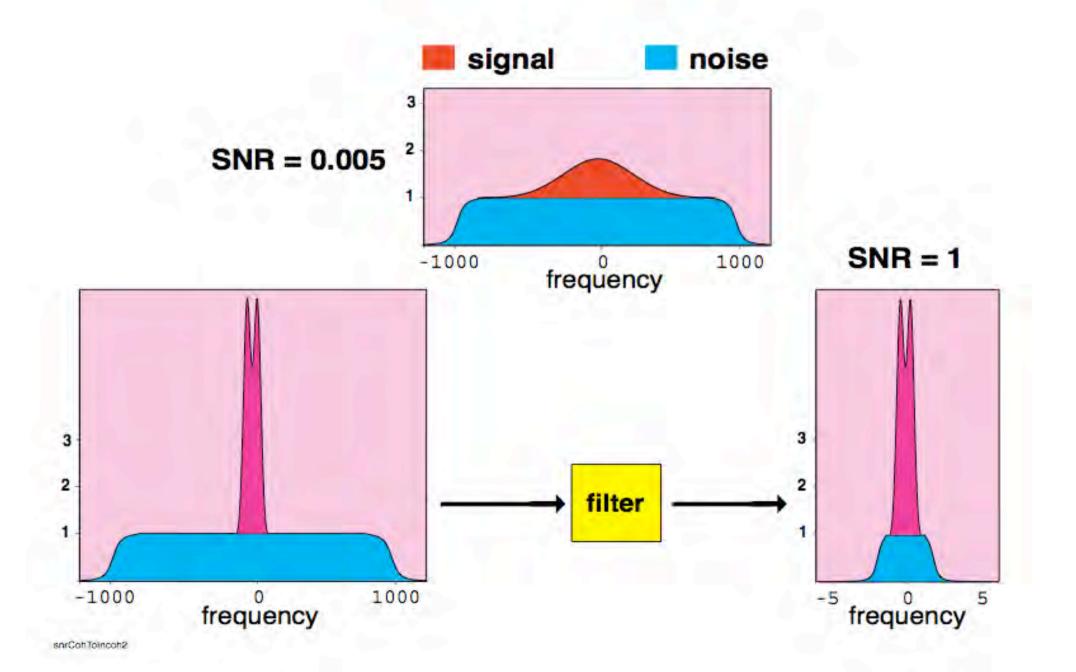
no collective interactions

$$S_{e}(\mathbf{k},\omega) = N_{e} \left| 1 - \frac{\chi_{e}(\mathbf{k},\omega)}{\epsilon(\mathbf{k},\omega)} \right|^{2} \int d\mathbf{v} f_{e}(\mathbf{v}) \delta(\omega - \mathbf{k} \cdot \mathbf{v}) + N_{e} \left| \frac{\chi_{e}(\mathbf{k},\omega)}{\epsilon(\mathbf{k},\omega)} \right|^{2} \int d\mathbf{v} f_{i}(\mathbf{v}) \delta(\omega - \mathbf{k} \cdot \mathbf{v})$$

$$S_c(\mathbf{k},\omega) = N_c \int d\mathbf{v} f_c(\mathbf{v}) \delta(\omega - \mathbf{k} \cdot \mathbf{v})$$





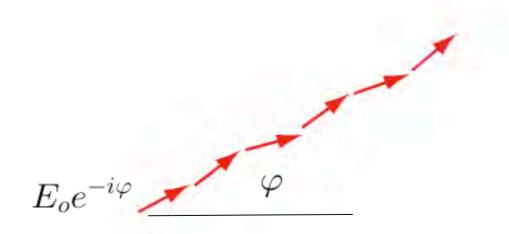


Coherent Scattering

$$E = E_o e^{-i(\omega t - kx_r)}$$

$$P \propto \langle EE^* \rangle = E_o^2 \sum_{r,s}^N \langle e^{-ik(x_r - x_s)} \rangle = N^2 E_o^2$$

$$\varphi = k(x_r - x_s) = 0 \bmod (2\pi)$$



Incoherent Scattering

$$E = E_o e^{-i(\omega t - kx_r)}$$

$$P \propto \langle EE^* \rangle = E_o^2 \sum_{r,s}^N \langle e^{-ik(x_r - x_s)} \rangle$$
$$= NE_o^2 + E_o^2 \sum_{r \neq s}^N \langle e^{-ik(x_r - x_s)} \rangle = NE_o^2$$

$$\sum_{j} = 0$$

Plasma Linear Response Functions

Free electron E-field

E

Induced E-field

$$\mathbf{E}_i = \chi \mathbf{E}$$

Total E-field

$$\mathbf{E}_T = \mathbf{E} + \chi \mathbf{E}$$
$$= \mathbf{E}(1 + \chi)$$

 $= \epsilon \mathbf{E}$

$$\chi_{\alpha}(\mathbf{k}, \omega) = \frac{\omega_{pe}^2}{k^2} \int_{\mathcal{L}} \frac{\mathbf{k} \cdot \partial_{\mathbf{v}} f_{\alpha}(\mathbf{v})}{\omega - \mathbf{k} \cdot \mathbf{v}} d\mathbf{v}$$

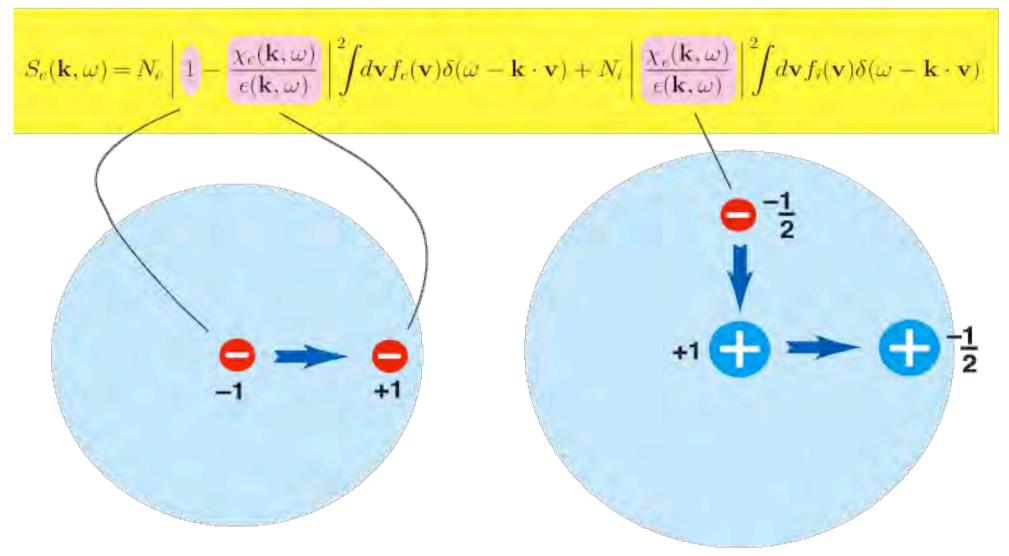
$$\epsilon(\mathbf{k},\omega) = 1 + \sum_{\alpha} \chi_{\alpha}(\mathbf{k},\omega)$$

Dressing clouds described by

 $\chi_{\alpha}(\mathbf{k},\omega)$

Plasma Line $S_{PL}(\mathbf{k},\omega)$

Ion Line $S_{IL}(\mathbf{k},\omega)$



electron with cloud

ion with cloud

Maxwellian Plasma

Spectrum
$$S(\mathbf{k}, \omega) = \sum_{\alpha} N_{\alpha} \frac{|\chi_e(\mathbf{k}, \omega)|^2}{|\epsilon(\mathbf{k}, \omega)|^2} \int f_{\alpha}(\mathbf{v}) \delta(\omega - \mathbf{k} \cdot \mathbf{v}) d\mathbf{v}$$

Maxwellian dist.

$$f_{\alpha}(\mathbf{v}) = \left(\frac{m}{2\pi k_B T_{\alpha}}\right)^{3/2} e^{-v^2/2k_B T_{\alpha}}$$

Normalised freq.

$$x_{\alpha} = \frac{v}{\sqrt{2}v_{\alpha}}$$

Plasma Disp. Func.

$$Z(x) = \frac{1}{\sqrt{\pi}} \int_{\mathcal{L}} \frac{e^{-\zeta^2/2}}{\zeta - x} d\zeta$$

Susceptibility

$$\chi_{\alpha}(\mathbf{k},\omega) = \frac{1}{(k\lambda_{\alpha})^2} [1 + x_{\alpha} Z(x_{\alpha})]$$

$$\int f_{\alpha}(\mathbf{v})\delta(\omega - \mathbf{k} \cdot \mathbf{v})d\mathbf{v} = \frac{(k\lambda_{\alpha})^2}{\pi\omega}\Im\chi_{\alpha}(\mathbf{k}, \omega)$$

The Imaginary Error Function Erfi(z)

Derivative

$$\frac{d}{dz}\mathrm{Erfi}(z) = \frac{2}{\sqrt{\pi}}e^{z^2}$$

Relation to Error Function Erf(z)

$$\operatorname{Erfi}(z) = -i\operatorname{Erf}(iz)$$

Plasma Dispersion Function
$$Z(z) = \sqrt{\pi}e^{-z^2} [i - \text{Erfi}(z)]$$

Susceptibility

$$\chi_{\alpha}(\mathbf{k},\omega) = \frac{1}{(k\lambda_{\alpha})^2} \left[1 + x_{\alpha} Z(x_{\alpha}) \right]$$

$$\chi_{\alpha}(\mathbf{k},\omega) = \frac{1}{(k\lambda_{\alpha})^2} \left[1 + \frac{x_{\alpha}Z(z_{\alpha})}{1 + jy_{\alpha}Z(z_{\alpha})} \right]$$

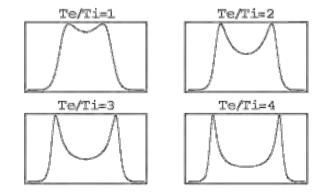
The Code

```
n = 128;
xMax = 0.1:
dx = xMax/n;
                                                             12
thetai = 1.0:
                                                             10
thetad = 1.:
pToEMass = 1842.;
mui = 16. * pToEMass;
mud = 1.0 * pToEMass;
ri = Sgrt[thetai * mui];
rd = Sqrt[thetad * mud];
kLD2 = (0.1)^2;
                                                                   0.005 0.01 0.015
                                          -0.015 -0.01 -0.005
alphad = 1.:
etai = 0.95;
                                                                      - Graphics -
etai = 1.00: (* No dust or second ion *)
w = 0./rd:
                                                                                       1
Z[z] := Sqrt[Pi] * E^{(-(z)^2)} (I - Erfi[z])
                                                                                       2
chiElec[z] := (1. + (z) * Z[z]) / kLD2;
dielectFunc3[z , w ] := 1 + chiElec[z] +
                                                                                       3
  thetai * etai * chiElec[ri * z] + thetad * alphad * (1 - etai) * chiElec[rd * (z - w)]
spec3[z , w] := (Abs[chiElec[z] / dielectFunc3[z, w]]) ^2 *
  (etai * (thetai * mui) ^ 1.5 * Exp [-z * z * ri * ri] +
                                                                                       4
    ((1. - etai) / alphad) * (thetad * mud) ^1.5 * Exp [-(z-w) * (z-w) * rd * rd])
spec0 = Plot[spec3[x, w], \{x, -0.016, 0.016\}, PlotRange \rightarrow All]
```

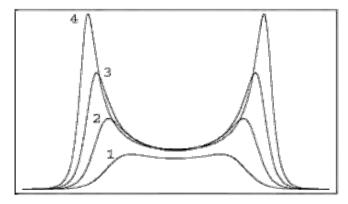
```
Block[{$DisplayFunction = Identity},
 thetai = 1.0;
 g1 = Plot[spec3[x, w], \{x, -0.016, 0.016\}, PlotRange $4$ All,
   Axes -> None, Frame -> True, FrameTicks -> None, PlotLabel 4 "Te/Ti=1"];
 thetai = 2.0;
 g2 = Plot[spec3[x, w], \{x, -0.016, 0.016\}, PlotRange \ All,
   Axes -> None, Frame -> True, FrameTicks -> None, PlotLabel 4 "Te/Ti=2"];
 thetai = 3.0;
 g3 = Plot[spec3[x, w], \{x, -0.016, 0.016\}, PlotRange + All,
   Axes -> None, Frame -> True, FrameTicks -> None, PlotLabel 4 "Te/Ti=3"];
 thetai = 4.0;
 g4 = Plot[spec3[x, w], \{x, -0.016, 0.016\}, PlotRange \( \preceq \) All,
   Axes -> None, Frame -> True, FrameTicks -> None, PlotLabel 4 "Te/Ti=4"]]
```

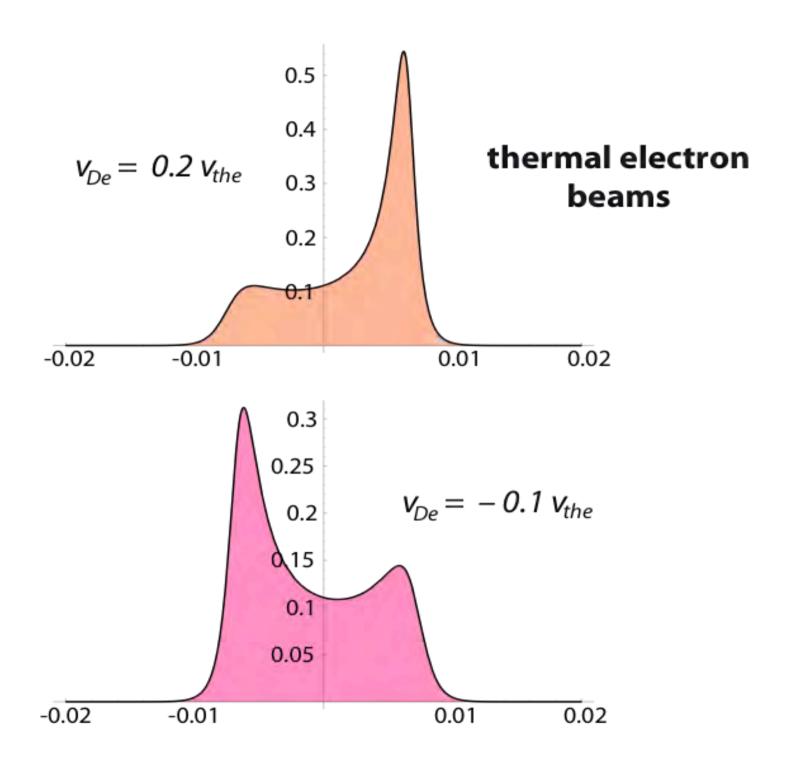
≪Graphics ≪

Show[GraphicsArray[{{g1, g2}, {g3, g4}}]];

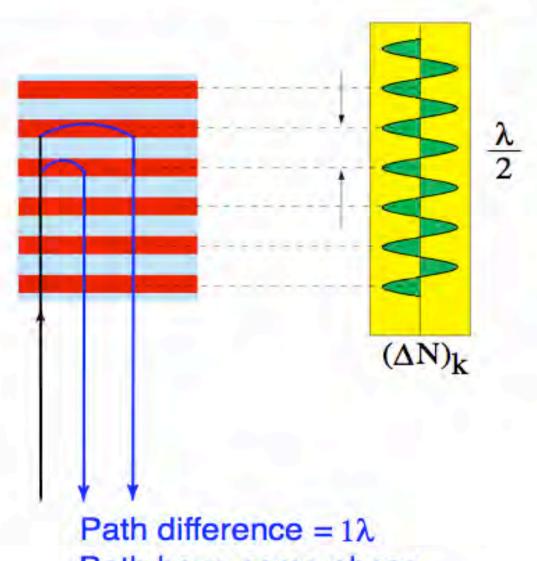


Show[g1, g2, g3, g4];



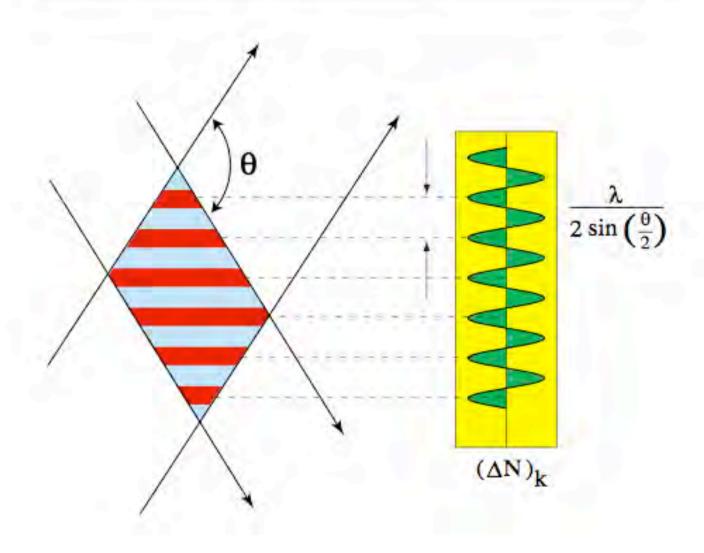


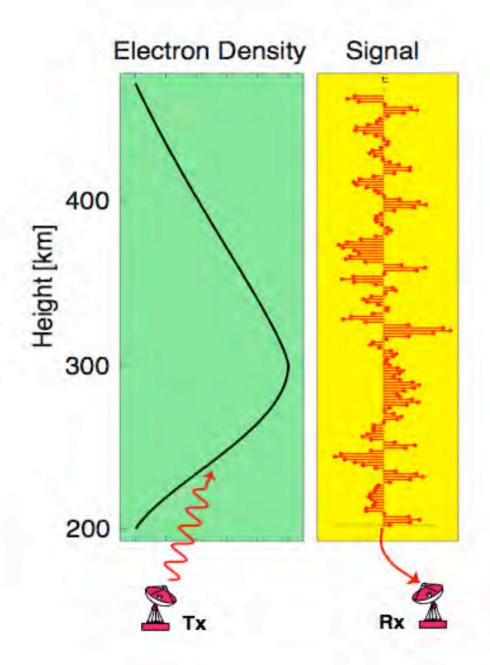
The Bragg scattering condition

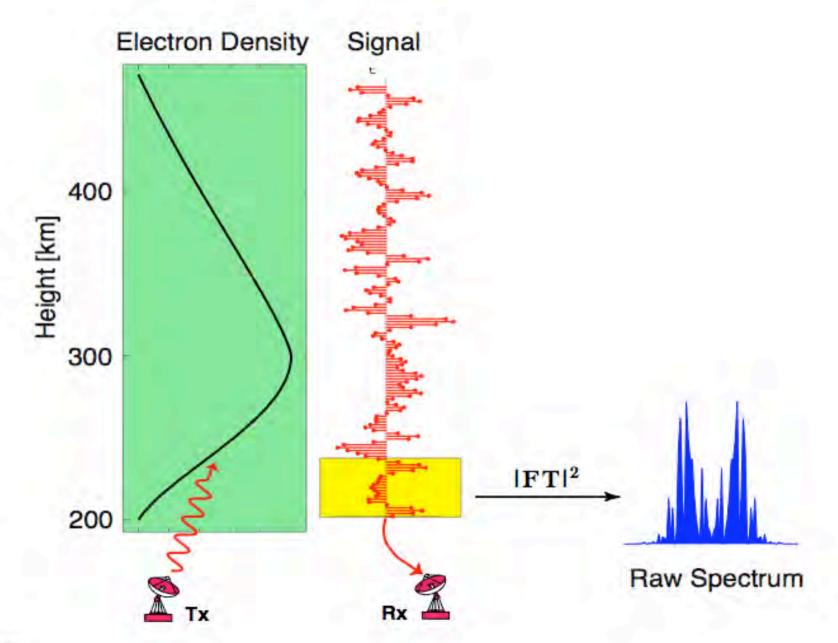


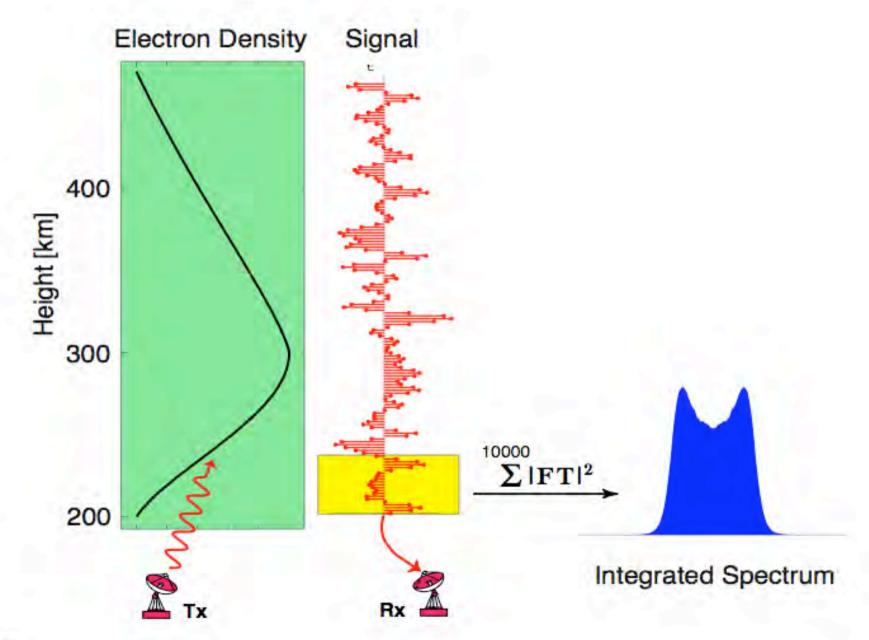
Both have same phase

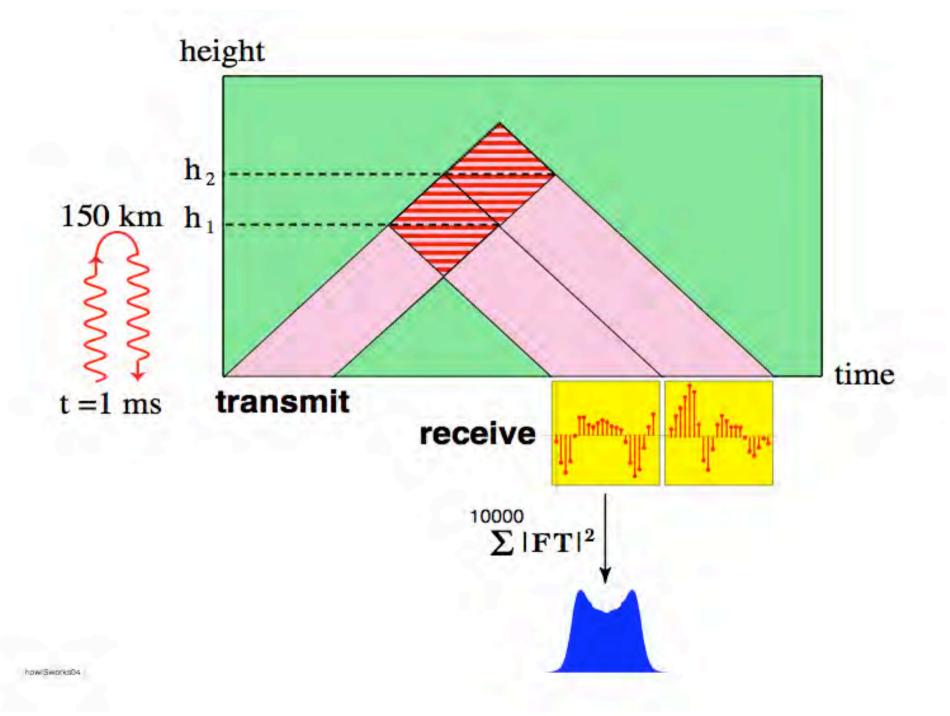
The Bragg scattering condition

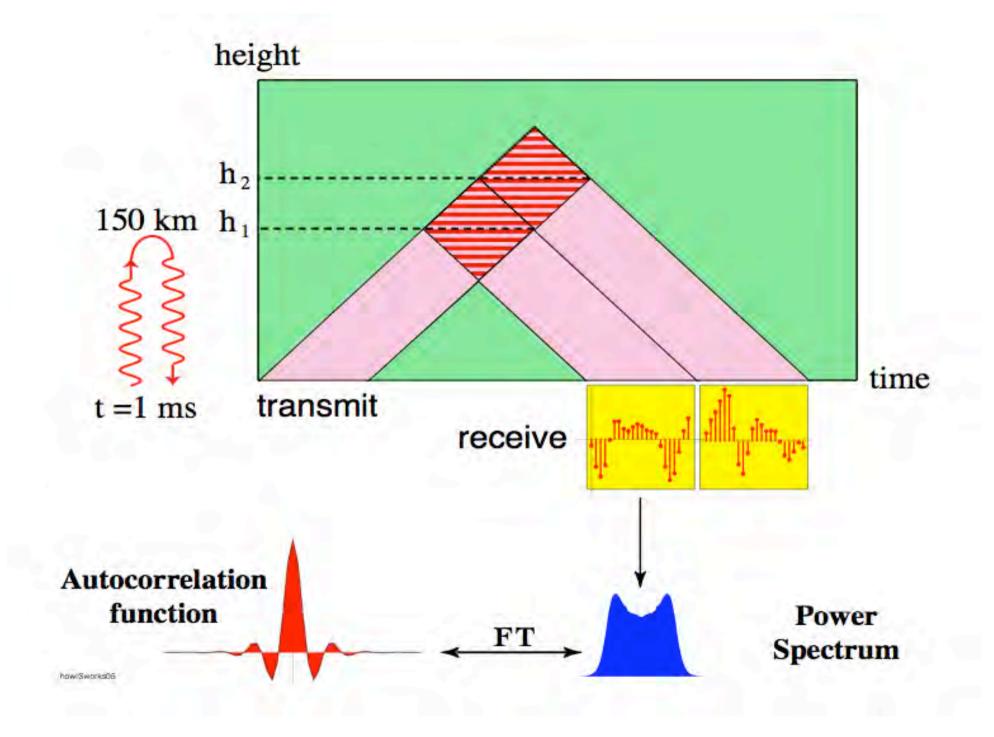


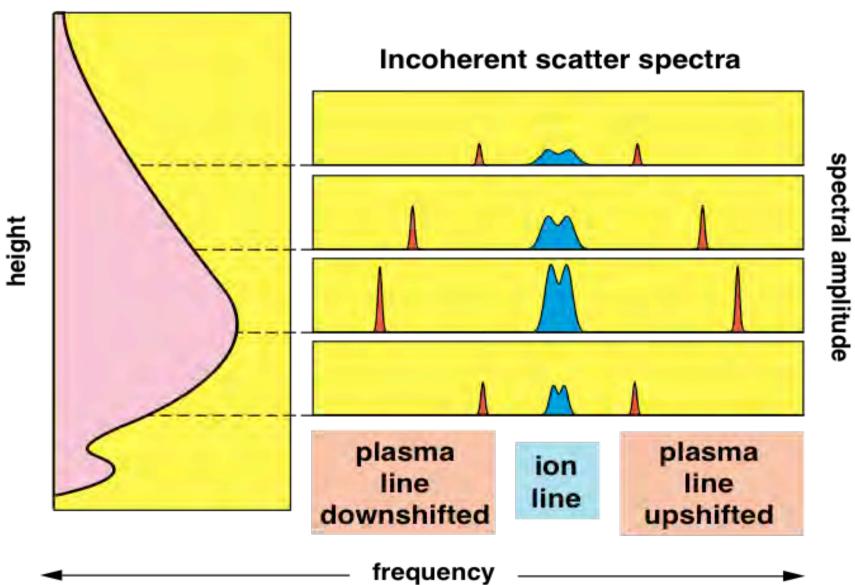


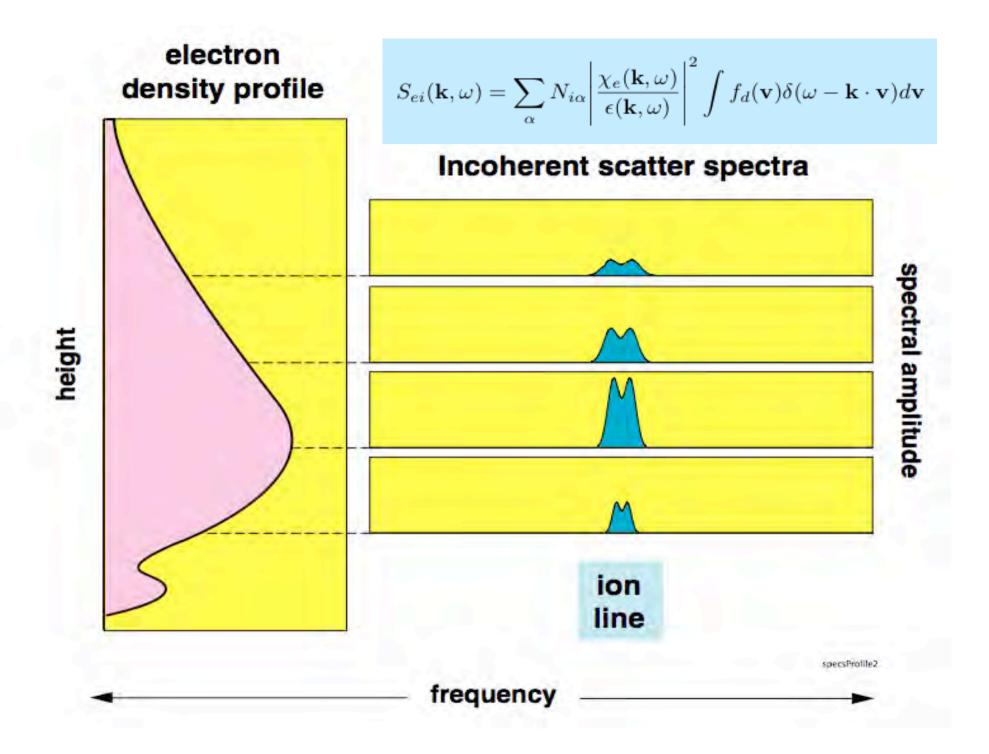


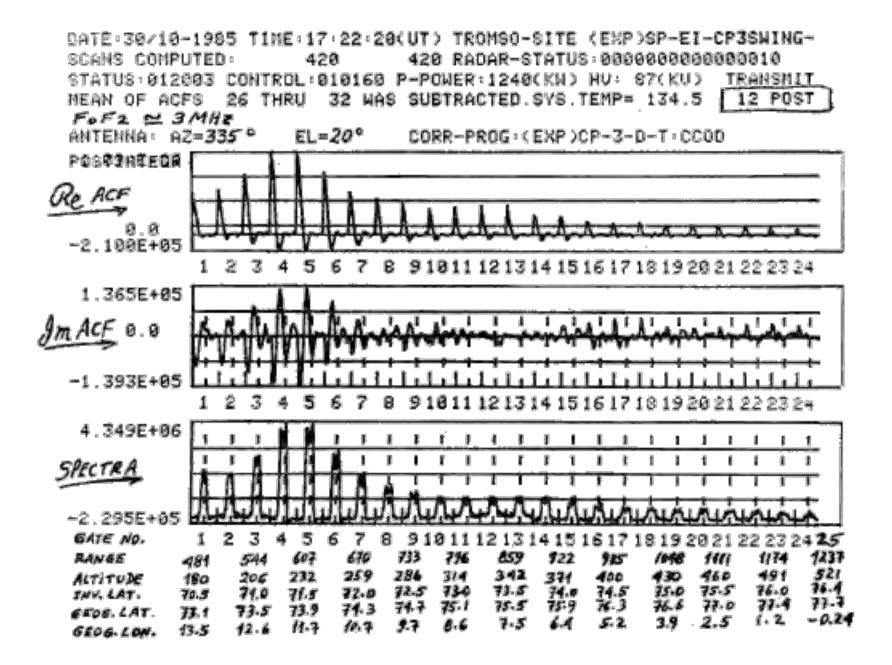


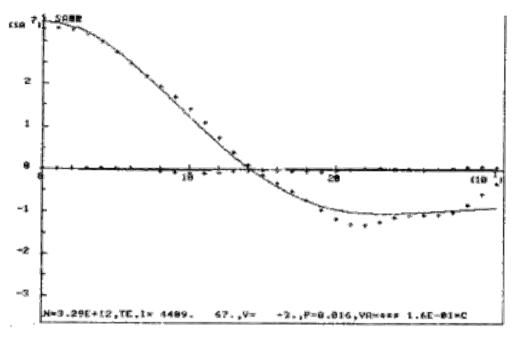


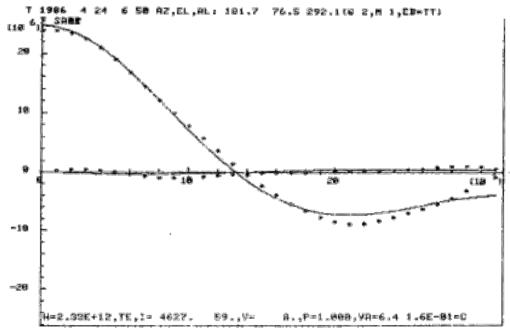




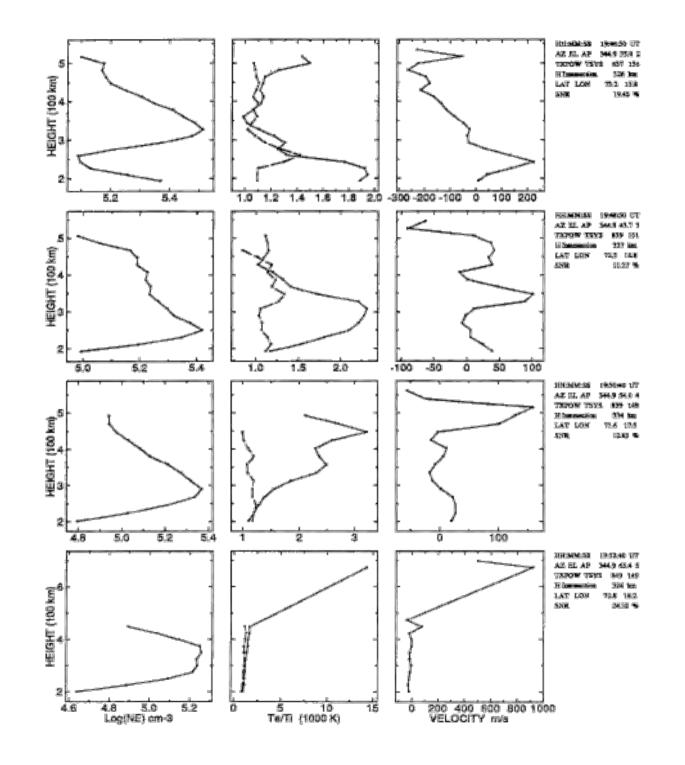


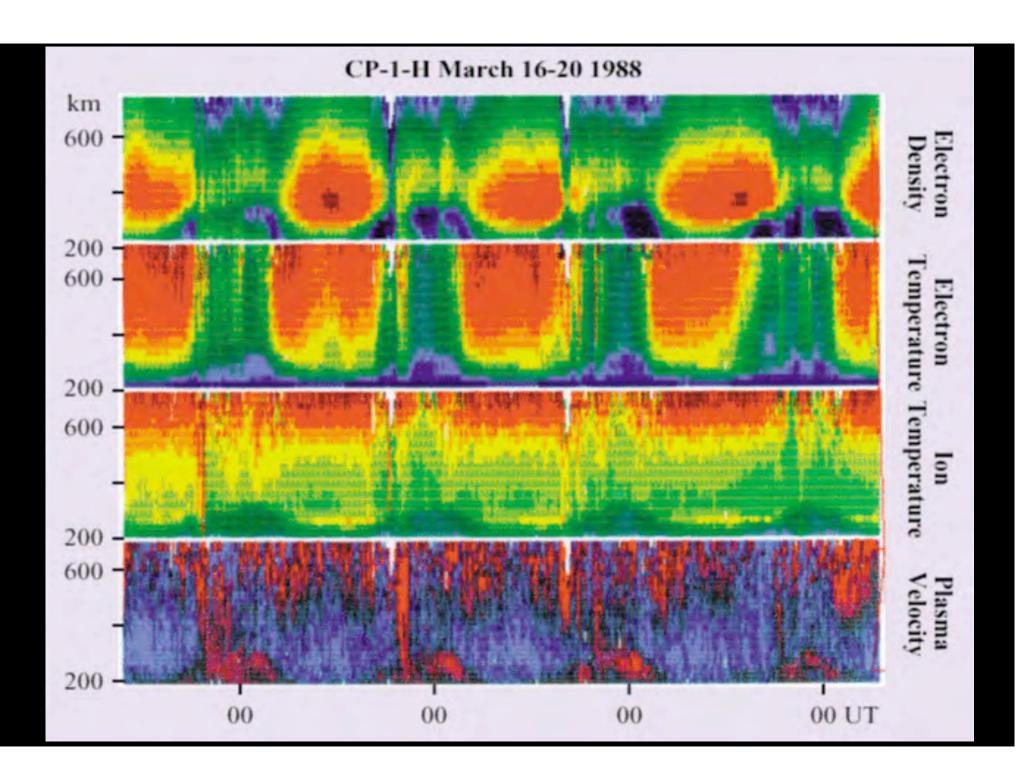




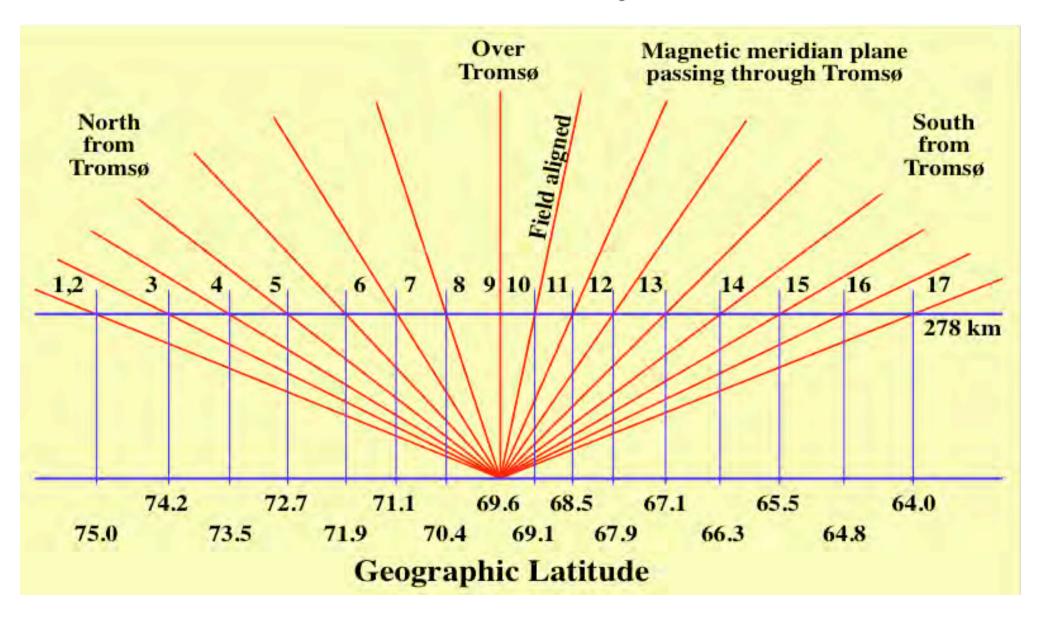


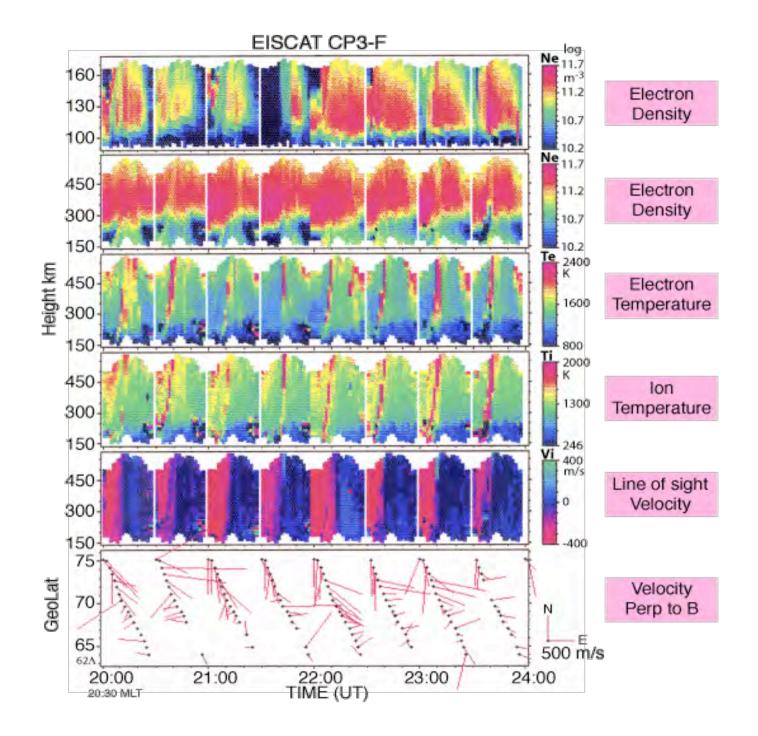
T 1986 4 24 6 58 82,EL,8L; 181.7 76.5 365.20 3,M 1,ED=TT1





CP-3 Geometry





Vlasov Theory of the Dielectric Function

The idea is to perturb the plasma and measure the response. The response is linearly related to the perturbation through the dielectric function $\epsilon(\mathbf{k}, \omega)$.

Vlasov Eq.
$$\partial_t f + \mathbf{v} \cdot \partial_{\mathbf{r}} f - \frac{e}{m_e} \mathbf{E} \cdot \partial_{\mathbf{v}} f = 0$$
Linear pert.
$$\delta f(\mathbf{k}, \mathbf{v}, \omega) = -\frac{(e/m_e) \mathbf{E} \cdot \partial_{\mathbf{v}} f(\mathbf{v})}{i(\omega - \mathbf{k} \cdot \mathbf{v})}$$
Densities
$$\rho = \delta \rho + \rho_s, \quad \delta \rho = N \int \delta f d\mathbf{v}$$
Poisson Eq.
$$-i\mathbf{k} \cdot \mathbf{E} = \frac{\delta \rho}{\varepsilon_o} + \frac{\rho_s}{\varepsilon_o}$$
Result
$$-i\mathbf{k} \cdot \mathbf{E} \left[1 + \frac{\omega_p^2}{k^2} \int_{\mathcal{L}} \frac{\mathbf{k} \cdot \partial_{\mathbf{v}} f(\mathbf{v})}{\omega - \mathbf{k} \cdot \mathbf{v}} d\mathbf{v} \right] = \frac{\rho_s}{\varepsilon_o}$$
Therefore
$$-i\mathbf{k} \cdot \mathbf{E} = \frac{\rho_s}{\varepsilon_o \epsilon(\mathbf{k}, \omega)}$$
Where
$$\epsilon(\mathbf{k}, \omega) = 1 + \frac{\omega_p^2}{k^2} \int_{\mathcal{C}} \frac{\mathbf{k} \cdot \partial_{\mathbf{v}} f(\mathbf{v})}{\omega - \mathbf{k} \cdot \mathbf{v}} d\mathbf{v}$$

Where

Illustration: The Free Electron Gas

Bare electron j

$$\rho_{ej}^{(b)}(\mathbf{r},t) = q_e \delta(\mathbf{r} - \mathbf{r}_j(t))$$

Unperturbed trajectory

$$\mathbf{r} = \mathbf{r}_{jo} + \mathbf{v}_{j}t$$

Fourier transform

$$\rho_{ej}^{(b)}(\mathbf{k},\omega) = q_e e^{-i\mathbf{k}\cdot\mathbf{r}_{jo}}\delta(\omega - \mathbf{k}\cdot\mathbf{v}_j)$$

Dressed electron

$$\rho_{ej}(\mathbf{k}, \omega) = \frac{q_e e^{-i\mathbf{k}\cdot\mathbf{r}_{jo}}\delta(\omega - \mathbf{k}\cdot\mathbf{v}_j)}{\epsilon(\mathbf{k}, \omega)}$$

Dielectric function

$$\epsilon(\mathbf{k},\omega) = 1 + \chi_e(\mathbf{k},\omega)$$

Susceptibility

$$\chi_e(\mathbf{k}, \omega) = \frac{\omega_{pe}^2}{k^2} \int_{\mathcal{L}} \frac{\mathbf{k} \cdot \partial_{\mathbf{v}} f_e(\mathbf{v})}{\omega - \mathbf{k} \cdot \mathbf{v}} d\mathbf{v}$$

Total density

$$\rho_e(\mathbf{k}, \omega) = \sum_j q_e e^{-i\mathbf{k}\cdot\mathbf{r}_{jo}} \delta(\omega - \mathbf{k}\cdot\mathbf{v}_j)$$

Power Spectrum

$$S(\mathbf{k},\omega) = \langle \rho_e(\mathbf{k},\omega) \rho_e^*(\mathbf{k},\omega) \rangle$$

... The Free Electron Gas

Power Spectrum
$$S(\mathbf{k}, \omega) = \frac{q_e^2 \left\langle \sum_i \sum_j \delta(\omega - \mathbf{k} \cdot \mathbf{v}_i) \delta(\omega - \mathbf{k} \cdot \mathbf{v}_j) \right\rangle}{|\epsilon(\mathbf{k}, \omega)|^2}$$

Uncorrelated dressed particles, $i \neq j$

$$\langle \delta(\omega - \mathbf{k} \cdot \mathbf{v}_i) \delta(\omega - \mathbf{k} \cdot \mathbf{v}_j) \rangle = 0$$

Result (per electron)
$$S(\mathbf{k}, \omega) = \frac{\langle \delta(\omega - \mathbf{k} \cdot \mathbf{v}) \rangle}{|\epsilon(\mathbf{k}, \omega)|^2}$$

The ensemble average
$$S(\mathbf{k}, \omega) = \frac{\int f_e(\mathbf{v}) \delta(\omega - \mathbf{k} \cdot \mathbf{v}) d\mathbf{v}}{|\epsilon(\mathbf{k}, \omega)|^2}$$

Maxwellian e-gas
$$\int f_e(\mathbf{v})\delta(\omega - \mathbf{k} \cdot \mathbf{v})d\mathbf{v} = \frac{(k\lambda_e)^2}{\pi\omega}\Im\epsilon(\mathbf{k},\omega)$$

Use of the identity
$$\frac{\Im \epsilon}{|\epsilon(\mathbf{k},\omega)|^2} = \Im \frac{1}{\epsilon(\mathbf{k},\omega)}$$

Gives
$$S(\mathbf{k}, \omega) = \frac{(k\lambda_e)^2}{\pi\omega} \Im \frac{1}{\epsilon(\mathbf{k}, \omega)}$$

This is precisely the result from the fluctuation dissipation theorem

δN_e due to a Test Particle: Vlasov Theory

From the kinetic Vlasov equation for electrons

$$\partial_t f + \mathbf{v} \cdot \partial_{\mathbf{r}} f - \frac{e}{m_e} \mathbf{E} \cdot \partial_{\mathbf{v}} f = 0$$

one obtains the perturbation of the electron distribution function due to the fluctuation electric field of a dressed test particle j of species α

$$\delta f_{e\alpha j}(\mathbf{k}, \mathbf{v}, \omega) = -\frac{(e/m_e)\mathbf{E}_{\alpha j} \cdot \partial_{\mathbf{v}} f(\mathbf{v})}{i(\omega - \mathbf{k} \cdot \mathbf{v})}$$

From Poisson equation one finds the electric field fluctuation due to the *dressed* test particle

$$\mathbf{E}_{\alpha j}(\mathbf{k},\omega) = \frac{i\mathbf{k}}{k^2 \varepsilon_o \epsilon(\mathbf{k},\omega)} \mathcal{Z}_{\alpha j} q_e \delta(\omega - \mathbf{k} \cdot \mathbf{v}_j) e^{-i\mathbf{k} \cdot \mathbf{r}_{jo}}$$

The electron number density fluctuation is found by integrating over the distribution function

$$\delta N_{e\alpha j}(\mathbf{k},\omega) = N_e \int \delta f_{e\alpha j}(\mathbf{k},\mathbf{v},\omega) d\mathbf{v}$$

Employing the first two equations in the last equation it is easy to find

$$\delta N_{e\alpha j}(\mathbf{k}, \omega) = \frac{\chi_e(\mathbf{k}, \omega)}{\epsilon(\mathbf{k}, \omega)} \mathcal{Z}_{\alpha j} \delta(\omega - \mathbf{k} \cdot \mathbf{v}_j) e^{-i\mathbf{k} \cdot \mathbf{r}_{jo}}$$

The next steps go identical as in the free electron plasma.

Multicomponent Plasma

After using the Vlasov equation to take account of the electronion interactions, the **electron density fluctuations** in the ω -k space are (**not** power spectrum):

$$\rho_{ee}(\mathbf{k}, \omega) = \left[1 - \frac{\chi_e(\mathbf{k}, \omega)}{\epsilon(\mathbf{k}, \omega)}\right] \rho_e^{(b)}(\mathbf{k}, \omega)$$

$$\rho_{e\alpha}(\mathbf{k},\omega) = \frac{\chi_e(\mathbf{k},\omega)}{\epsilon(\mathbf{k},\omega)} \rho_{\alpha}^{(b)}(\mathbf{k},\omega)$$

where the indeces ee mean the electron fluctuations due to electrons, and $e\alpha$ the electron fluctuation due to ions of species α .

The screening of the bare particles can be considered as a **renormalization** of the particle's charge in the usual sense of field theories. The renormalization is determined by the linear polarization response functions, that is, the susceptibilities χ of the plasma components. The screened particles are, again in the sense of field theories, **quasi-particles**

Since dust incoherent scattering is due only to electrons, we are interested in the electron fluctuations due to **charged dust particles** when $\alpha = d$.