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till offentlig granskning i IRF:s aula, tisdagen den 6 maj 2008, kl. 9:00

av

Csilla Szasz

FAKULTETSOPPONENT

Dr. Noah Brosch, Tel Aviv University, Tel Aviv, Israel





RADIO METEORS ABOVE THE ARCTIC CIRCLE:
RADIANTS, ORBITS AND ESTIMATED MAGNITUDES

Csilla Szasz

IRF Scientific Report 294

RADIOMETEORER OVAN POLCIRKELN:
RADIANTER, BANOR OCH UPPSKATTADE MAGNITUDER

Swedish Institute of Space Physics
Kiruna 2008



Cover illustration:
The sun, the Earth and 39 meteoroid orbits
BLUE CURVES: Orbits of Earth (⊕), Mars (♂), Jupiter (") and Saturn (#) around the sun (")
GREEN CURVES: prograde meteoroid orbits
RED CURVES: retrograde meteoroid orbits

CSILLA SZASZ and JOHAN KERO

c© Csilla Szasz

DOCTORAL THESIS AT THE SWEDISH INSTITUTE OF SPACE PHYSICS
Radio meteors above the Arctic Circle: radiants, orbits and estimated magnitudes
DOKTORSAVHANDLING VID INSTITUTET FÖR RYMDFYSIK
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RADIOMETEORER OVAN POLCIRKELN:
RADIANTER, BANOR OCH UPPSKATTADE MAGNITUDER

SAMMANFATTNING

Avhandlingens resultat är baserade på mätningar med den trestatiska EISCAT UHF-
radarn och tre SKiYMet meteorradarsystem. En metod för meteoroidbanberäkning
presenteras i detalj.

EISCAT UHF-systemet består av tre identiska, 32 m stora parabolantenner: en hög-
effektssändare/mottagare och två fjärrstyrda mottagare. Under fyra 24-timmarsmät-
ningar vid vår-/höstdagjämning och sommar-/vintersolstånd mellan 2002 och 2005
detekterades 410 meteoriska huvudekon simultant med alla tre mottagare. Dessa tre-
statiska meteorers atmosfärsinbromsning och radartvärsnitt har fastställts mycket nog-
grant och använts till att beräkna meteoroidernas banor samt uppskatta meteorernas
luminositeter. Ingen av de observerade meteoroiderna verkar vara av interstellärt eller
asteroidursprung. Deras troligaste ursprung är kometer, framför allt kortperiodskome-
ter (< 200 år). Ungefär 40% av meteorradianterna kan associeras till norra apex, ett
källområde för sporadiska meteorer, och totalt är 58% av partiklarnas banor retrograda.
Meteoroidernas geocentriska hastighetsfördelning har två lokala maxima: ett för den
prograda populationen vid 38 km/s och ett för den retrograda vid 59 km/s. Genom
att anpassa datat till en numerisk ablationsmodell som simulerar meteoroidernas färd
genom atmosfären har de detekterade meteorernas absoluta visuella magnituder upp-
skattats till mellan +9 och +5. Detta innebär att de är observerbara med bildförstärkta,
teleskopiska CCD-kameror.

Avhandlingen diskuterar även hur sporadiska meteorers dygns- och säsongsinflöde
beror på geografisk latitud och meteorradianternas distribution på himmelssfären. Detta
utreds med hjälp av spårekon detekterade under perioden 1999-2004 med tre meteor-
radarsystem på latituderna 68◦N, 55◦N och 8◦S. Dygnsinflödet varierar mest på låga
latituder och minst på höga. Ju högre latitud, desto mer förändras däremot dygns-
inflödet över året. Avhandlingen visar att de dominerande källområdena varierar med
säsong, över dygnet och med latitud.

Både EISCAT UHF-systemet och meteorradarn på 68◦N är belägna nära polcirkeln.
Detta innebär att norra ekliptiska polen (NEP) är i zenit en gång per dygn, året om.
Vid just denna tidpunkt sammanfaller ekliptikan med den lokala horisonten, vilket
möjliggör att det observerade meteorinflödet från norra ekliptiska hemisfären kan jäm-
föras över året. Under timmen då NEP är närmast zenit har EISCAT UHF uppmätt
ett ungefär tre gånger högre meteorinflöde vid sommarsolståndet än under de andra
säsongerna, vilket överensstämmer med resultaten från meteorradarn på 68◦N.

NYCKELORD: meteorer, meteoroider, interplanetärt stoft, meteorradianter, meteoroid-
banor, sporadiska källområden, radar
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RADIO METEORS ABOVE THE ARCTIC CIRCLE:
RADIANTS, ORBITS AND ESTIMATED MAGNITUDES

ABSTRACT

This thesis presents results based on data collected with the 930 MHz EISCAT UHF
radar system and three SKiYMet specular meteor radars. It describes in detail a method
for meteoroid orbit calculation.

The EISCAT UHF system comprises three identical 32 m parabolic antennae: one
high-power transmitter/receiver and two remote receivers. Precise meteoroid deceler-
ation and radar cross section are determined from 410 meteor head echoes simultane-
ously observed with all three receivers between 2002 and 2005, during four 24 h runs
at the summer/winter solstice and the vernal/autumnal equinox. The observations are
used to calculate meteoroid orbits and estimate meteor visual magnitudes. None of the
observed meteors appear to be of extrasolar or asteroidal origin; comets, particularly
short period (< 200 years) ones, may be the dominant source for the particles observed.
About 40% of the radiants are associated with the north apex sporadic meteor source
and 58% of the orbits are retrograde. The geocentric velocity distribution is bimodal
with a prograde population centred around 38 km/s and a retrograde population peak-
ing at 59 km/s. The absolute visual magnitudes of meteors are estimated to be in the
range of +9 to +5 using a single-object numerical ablation model. They are thus observ-
able using intensified CCD cameras with telephoto lenses.

The thesis also investigates diurnal meteor rate differences and sporadic meteor ra-
diant distributions at different latitudes using specular meteor trail radar measurements
from 68◦N, from 55◦N and from 8◦S. The largest difference in amplitude of the diurnal
flux variation is at equatorial latitudes, the lowest variation is found at high latitudes.
The largest seasonal variation of the diurnal flux is observed with the high-latitude me-
teor radar. The investigations show a variation in the sources with both latitude and
time of day.

The EISCAT UHF system and the high-latitude meteor radar are located close to the
Arctic Circle. Such a geographical position means that zenith points towards the North
Ecliptic Pole (NEP) once every day all year round. This particular geometry allows the
meteoroid influx from the north ecliptic hemisphere to be compared throughout the
year as the ecliptic plane coincides with the local horizon. Considering only the hour
when NEP is closest to zenith, the EISCAT UHF head echo rate is about a factor of three
higher at summer solstice than during the other seasons, a finding which is consistent
with the high-latitude meteor radar measurements.

KEYWORDS: meteors, meteoroids, dust, meteor radiants, meteoroid orbits, sporadic
sources, radar





CONTENTS ix

CONTENTS
Sammanfattning v

Abstract vii

List of Included Papers 1

1 Introduction to Meteor Physics 3

2 Sources of Meteoroids 5
2.1 Discriminating Cometary Dust from Asteroidal Dust . . . . . . . . . . . . . . . . . 5

3 Radar Observations of Meteors 7
3.1 Specular Meteor Radars . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.2 HPLA Radars . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

4 Observations 9
4.1 EISCAT UHF Observations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
4.2 SKiYMet Specular Radar Observations . . . . . . . . . . . . . . . . . . . . . . . . . 11

5 Coordinate Systems 13
5.1 The Longitude-Latitude System on Earth . . . . . . . . . . . . . . . . . . . . . . . . 13
5.2 The Horizon System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
5.3 The Celestial Equatorial System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
5.4 The Ecliptic System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
5.5 The Galactic System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

6 Methodology of Orbit Calculations 19
6.1 Correcting for the Flattening and Rotation of the Earth . . . . . . . . . . . . . . . . 19
6.2 Solar Coordinates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
6.3 Aberration and Zenith Attraction Correction . . . . . . . . . . . . . . . . . . . . . . 21
6.4 Ecliptic Radiant . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
6.5 True Heliocentric Radiant . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
6.6 Orbital Elements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

6.6.1 Inclination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
6.6.2 Semi-Major Axis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
6.6.3 Eccentricity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
6.6.4 Perihelion and Aphelion Distance . . . . . . . . . . . . . . . . . . . . . . . . 28
6.6.5 True and Eccentric Anomaly . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
6.6.6 Time from Perihelion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
6.6.7 Longitude of the Ascending Node . . . . . . . . . . . . . . . . . . . . . . . . 30
6.6.8 Argument of Perihelion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
6.6.9 Period . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

7 Summary of the Included Papers 31
7.1 Paper I: Orbit Characteristics of the Tristatic EISCAT UHF Meteors . . . . . . . . . 31
7.2 Paper II: Estimated Visual Magnitudes of the EISCAT UHF Meteors . . . . . . . . 31

7.2.1 Further Comments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
7.3 Paper III: Latitudinal Variations of Diurnal Meteor Rates . . . . . . . . . . . . . . . 32
7.4 Paper IV: Radar Studies of the Sporadic Meteoroid Complex . . . . . . . . . . . . . 32

7.4.1 Further Comments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
7.5 Paper V: Quantitative Comparison of a New Ab Initio Micrometeor Ablation Model 33

Acknowledgements 35

References 37

A Variable Name Key - Orbit Calculations 41

B Papers I-V 43





1

LIST OF INCLUDED PAPERS

This thesis is based on the work reported in the following papers:

I. C. Szasz, J. Kero, D. D. Meisel, A. Pellinen-Wannberg, G. Wannberg, and A. West-
man (2008). ORBIT CHARACTERISTICS OF THE TRISTATIC EISCAT UHF METEORS,
Monthly Notices of the Royal Astronomical Society, submitted.

II. C. Szasz, J. Kero, A. Pellinen-Wannberg, D. D. Meisel, G. Wannberg, and A. West-
man (2008). ESTIMATED VISUAL MAGNITUDES OF THE EISCAT UHF METEORS,
Earth, Moon, and Planets, 102:373–378.

III. C. Szasz, J. Kero, A. Pellinen-Wannberg, J. D. Mathews, N. J. Mitchell, and W. Singer
(2004). LATITUDINAL VARIATIONS OF DIURNAL METEOR RATES, Earth, Moon, and
Planets, 95:101–107.

IV. C. Szasz, J. Kero, A. Pellinen-Wannberg, G. Wannberg, A. Westman, N. J. Mitchell,
and W. Singer (2005). RADAR STUDIES OF THE SPORADIC METEOROID COMPLEX,
In Proceedings of RadioVetenskap och Kommunikation, Linköping, 2005, pp. 191–
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1 INTRODUCTION TO METEOR PHYSICS

ETEOROIDS roam through the solar system with orbits of all inclinations. Me-
teoroids, or interplanetary/interstellar debris, range in size from small aster-
oids with radii of ∼10 km down to micrometeoroids with radii of ∼100 µm
and dust, radii ∼1 µm (Beech and Steel, 1995). Meteor, colloquially “shooting

star”, is the common name for the streak of light in the sky generated by meteoroids
and other natural bodies entering the terrestrial atmosphere irrespective of size, struc-
ture and origin (Beech and Steel, 1995). If any material survives the plunge through air,
it strikes the ground as a meteorite.

The word meteor originates from the Greek word µετεωρoν meaning an atmospheric
phenomenon, as rain, hail, snowfall, lightning, thunder, storm, rainbow and shooting
star (Meteor, 1944). Today the word meteorology is used to denote weather processes
and meteor means only shooting star.

Meteoroids bound up in the solar system colliding with the Earth’s atmosphere have
geocentric speeds ranging from the Earth escape velocity of 11.2 km/s to the solar es-
cape velocity of 72.3 km/s (Ceplecha et al., 1998). Interplanetary meteoroids cannot
have speeds exceeding the solar escape velocity at the Earth orbit, i.e. 42.5 km/s in the
solar frame of reference, and Earth moves along its orbit at a speed of 29.8 km/s. Me-
teoroids with greater speeds than 42.5 km/s have hyperbolic orbits and thus originate
from interstellar space (Zeilik and Gregory, 1998).

Sporadic meteors can be seen every night with the naked eye in all possible direc-
tions. About 75% of the observed meteors are sporadic, the rest belong to meteor show-
ers (Ceplecha et al., 1998). Meteor showers occur when Earth cuts through comet trails.
Comets can simply be described as dusty balls of snow and ice. Therefore, as a result of
intense solar heating and tidal forces, comets leave material lost from their tail behind in
the form of pieces of solid material as they approach the sun (Zeilik and Gregory, 1998).
When Earth intercepts the orbit of a comet, meteors seem to come from a certain point
in the sky, called the meteor radiant, when their trails are traced back on a sky map.
Meteor showers are usually named after the constellations in which their radiants lie.
Examples of spectacular yearly showers are the Perseid shower appearing in August,
the Leonid shower in November and the Geminid shower in December.

When a meteoroid enters the atmosphere, it may be heated to several thousand
Kelvin by friction due to air molecules. Meteoroids of sizes between 0.05 and 0.5 mm
are heated throughout while only the surface layer, down to a few tenths of a millimeter,
is heated for larger particles (Ceplecha et al., 1998). Depending on size and velocity, it
takes about 10 to 40 km before a meteoroid has lost all of its mass (Ceplecha et al., 1998).
The time duration for visible meteors is on average less than one second.

After atmospheric entry the meteoroid starts to heat up. Before the melting point
is reached, the heat input is balanced by a temperature rise in the body and thermal
radiation from it. However, the temperature cannot rise higher than the boiling point
of the meteoroid and mass is therefore lost through ablation – meteoroid mass loss due
to vaporization, fusion of molten material and fragmentation (Bronshten, 1983). The
visible light emitted from the meteoroid arises mostly from the deexcitation of the ex-
cited atoms lost from the the surface of the meteoroid (Ceplecha et al., 1998; Hawkes,
2002). The process ends with the meteoroid either disappearing via ablation or drop-
ping below the boiling temperature and impacting the ground – as a meteorite. Slow
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meteoroids smaller than a few hundreds of micrometres do not reach the evaporation
regime at all, thus no meteor phenomena occur. Instead, a meteoroid dust particle sedi-
ments slowly through the atmosphere and reaches the Earth surface unchanged (Ceple-
cha et al., 1998), but they can also be melted, or partially melted (Genge, 2008). The main
ablation occurs within the height range from 140 to 70 km (Hawkes, 2002), where the at-
mospheric pressure starts to be significant. The density of the atmosphere increases and
the size of the meteoroid decreases due to ablation during the downward flight.

A meteoroid also decelerates during its atmospheric passage, but by no more than
a few percent (Ceplecha et al., 1998; Hawkes, 2002; Herlofson, 1951). Millimeter-sized
meteoroids or smaller are in free molecular flow during flight in the atmosphere (Bron-
shten, 1983). Thus collisions with single air molecules are the most important process
during their passage through the atmosphere. Considering a typical meteoroid with a
velocity of about 40 km/s, most collisions between air molecules and the meteoroid sur-
face will be inelastic and the excess velocity will heat the body. Furthermore, the binding
energy of the meteoroid atoms is as low as a few electron volts, thus the energy of one
trapped air molecule is sufficient to evaporate a large number of meteoroid atoms. This
means that intercepting an air mass of 1-2 % of the meteoroid mass is enough to entirely
disrupt the meteoroid into atoms (Herlofson, 1951). In particular, it is observationally
confirmed that since the intercepted air mass is negligible compared to the meteoroid
mass, the body will generally not be decelerated more than a few percent before it is
disrupted into separate atoms.

The jet of vaporised atoms emerging from the meteoroid, mixed with air, is called
coma in the area where the atoms are not fully decelerated yet, i.e. where these elements
still have a considerable portion of their original kinetic energy of forward motion left.
The main dissipation of the ordinary meteoroids take place in the coma and it is also
here the impact radiation takes place, which means that the coma is the main source
of the luminosity of visible meteors. At an adequate distance behind the coma is the
wake train, a region where the translational velocity of the coma is decelerated well
below the mean molecular velocity of the surrounding atmosphere. The wake train has
the shape of a column that is tailing the meteoroid, also called the trail and is the same
ionized column observed with specular radars (see Section 3.1). Bright and fast meteors
are after their disappearance followed by a band of light called the train. The diameter
of the train is in the order of 0.1 to 1 km and its time of visibility ranges from a few
seconds to several minutes. A more detailed description of the meteor phenomenon
can be found in Öpik (1958).
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2 SOURCES OF METEOROIDS

LTHOUGH the lifetime of dust particles in the solar system is of the order of
only 105 years, hypervelocity microimpact craters on larger grains of mete-
oritic and lunar origin attests that dust has existed in interplanetary space for
billions of years (Brownlee, 1985). This implies that new dust is created con-

tinuously.
Dust grains in interplanetary space have finite lifetimes. They will eventually escape

the solar system on hyperbolic paths or fall into the Sun. The escape scenario takes
place if the solar radiation pressure force on a particle is stronger than the gravitational
force (Williams, 2002). Particles on bound orbits will decelerate due to the Poynting-
Robertson effect, which make their orbits shrink more and more until they are finally
destroyed by the heat of the Sun. The inner parts of this dust population is seen as the
zodiacal light.

All solid bodies in the solar system can release material during impact events. As
impact events large enough for releasing particulates from planets have been rare, at
least during the second half of the solar system lifetime, comets and asteroids are the
main sources of dust (Brownlee, 1985). Active comets produce dust and meteoroids
during ice sublimation as they approach perihelion. Asteroids can only generate dust
through collisions.

2.1 DISCRIMINATING COMETARY DUST FROM ASTEROIDAL
DUST

Comets are icy protoplanets formed during the nebular evolution in the outskirts of the
solar system. This region is called the Oort cloud and defines a spherical region with a
radius of 105 AU. Long-period comets have their aphelia in the Oort cloud whereas
most short-period comets reside in the Kuiper belt, a region at a distance of about
40-50 AU from the Sun. The primordial dust incorporated in an icy protoplanet will
be released to interplanetary space if the orbit of the body gets perturbed and it reaches
the inner parts of the solar system. As the body approaches perihelion, it will eject
dust in a tail-like manner characteristic for an active comet. The dust grains will have
velocities of the same order as their parent body.

The velocity of cometary dust will at 1 AU be significantly higher than the velocity
of dust released by collisions of asteroids in the asteroid belt. The most obvious way of
discriminating between dust from comets and asteroids is therefore velocity and orbit
determination (Jessberger, 2001).

Cometary dust is more primitive than asteroidal dust in the sense that it has not been
altered by the thermal and aqueous processes taking place inside asteroids (Rietmeijer,
2002). The dynamic pyrometamorphism during atmospheric entry is by far the most
dramatic thermal event experienced by collected dust particles.
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3 RADAR OBSERVATIONS OF METEORS

HERE ARE several methods of observing meteors and each method answers
different questions. The oldest observations were made with the naked eye.
Visual observations in the form of photography, LLLTV (low light level tele-
vision) and video methods are still widely used, but meteors can also be ob-

served using spectral, lidar, acoustic, infrasonic, seismic and radar methods. Ceple-
cha et al. (1998) have written an excellent review covering all these observation tech-
niques. Beyond this point, only radar observations will be considered, except in Pa-
per II where simultaneous meteor observations using telescopic optical devices and the
EISCAT 930 MHz UHF radar system are discussed.

The radar target is provided by the coherent reflection from the meteor plasma and
there are two types of meteor echoes – meteor head echoes and meteor trail echoes.
Head echoes are radio wave reflections from the plasma generated by the interaction of
meteoroids with the atmosphere at about 70-140 km altitude. The echoes are character-
ized by being transient and Doppler-shifted. The received power is confined in range,
as from a point source, and it moves with the line-of-sight velocity of the meteoroid.
Trail echoes are radio wave reflections from the meteor wake train.

3.1 SPECULAR METEOR RADARS

The free electrons in the meteor wake train are able to scatter incident radio waves and
hence the meteor can be detected by radar systems.

Meteor radar systems operate typically in the 15 to 60 MHz frequency range. Too
low frequencies result in interference from ionospherically reflected signals. If the fre-
quency is higher than the ceiling limit, the wake train radius is of the same order as
half the wavelength. The wake train then becomes invisible for the radar due to de-
structive interference between signals reflected at different depths within the wake train
(Mitchell, 2002).

A specular meteor radar consists usually of Yagi antennae in various configurations.
So-called all-sky systems use low-gain antennae as these are capable of detecting mete-
ors over the whole sky. An example of an all-sky system is the All-Sky Interferometric
Meteor Radar called SKiYMet, described in detail by Hocking et al. (2001). One such
radar is located at Esrange in northern Sweden. It uses an array consisting of five re-
ceiver antennae acting as an interferometer. The five receiving antennae are arranged in
the form of an asymmetric cross, with arms of lengths of either 2 or 2.5 wavelengths, as
shown in Figure 1. Each receiver antenna is connected to a separate receiver with cables
of equal phase-length, about 70 m.

The beam width is defined by the antenna geometry together with the radar fre-
quency. For specular meteor radars, the beam width is tens of degrees and can even
approach a cone of π sr (a quarter of a sphere), which is useful if the intention is to
study sporadic meteors. Since specular meteor radars have large opening angles, they
detect scatter from meteors in a large volume at meteoric heights. In this way, it is
possible to observe both shower and sporadic meteors with these radars.

If the plasma trail produced by a meteoroid entering the atmosphere is aligned
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Figure 1: Plan view of the antenna arrangement for the SKiYMet radar system. The placing of the
transmitter antenna is arbitrary as long as it is not too close to any of the receiving antennae.

perpendicularly to the meteor radar beam direction, detection may occur. After reflec-
tion from ionization trails of incident meteoroids, the echo is received by the receiver
antenna array. The interferometric capabilities of the radars enable determination of
meteor radiants common to many meteors statistically as described by, e.g., Morton and
Jones (1982), Hocking et al. (2001) and in Paper IV. It is not possible to deduce radiants
for individual meteors, however, unless the meteor radar system consists of several re-
ceiver arrays. Examples are the Advanced Meteor Orbit Radar (AMOR) (Baggaley et al.,
1994) and the Canadian Meteor Orbit Radar (CMOR) (Webster et al., 2004; Jones et al.,
2005). These systems have run practically continuously since 1990 (AMOR) and 2001
(CMOR) and have recorded millions of meteoroid orbits (Galligan and Baggaley, 2004;
Campbell-Brown, 2007). Paper I contains a comparison of the orbits determined by the
EISCAT UHF system and results from these and other radar systems.

3.2 HPLA RADARS

The first meteor investigations with what today is termed a High Power Large Aper-
ture (HPLA) radar were conducted by Evans (1965, 1966) with the 440 MHz Millstone
Hill radar. Some of the measurements were optimized to provide specular trail reflec-
tions (Evans, 1965) whereas others were optimized for detecting head echoes of shower
meteoroids travelling down-the-beam (Evans, 1966). Evans pointed the radar beam at
shower radiants when these were visible at very low elevations to get as big a cross-
beam detection volume as possible and applied strict restrictions to ensure that the de-
tections originated from meteoroids confined in a small angle from boresight.

Dedicated meteor observations were hereafter not conducted with HPLA radars for
about 30 years. When studies of meteors with this kind of radar resumed, the improved
signal processing techniques and large data handling capacities proved them suitable
for studies of sporadic meteor head echoes (Pellinen-Wannberg and Wannberg, 1994;
Zhou et al., 1995). The sporadic meteoroids will in general neither travel down the
beam nor perpendicular to it and cannot be treated as such (Kero et al., 2008a).

HPLA radars have very narrow beams; the opening angle is usually less than 1◦.
Therefore, when using a narrow-beam radar, a head echo does not usually depict the
whole meteor ionization process to which the meteoroid gives rise on its way down
through the atmosphere. If the meteoroid does not go straight down the beam, but at
some angle to it, only a part of the ionization process is detectable.
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4 OBSERVATIONS

HE RESULTS in the appended papers are based on both EISCAT UHF head
echo observations and data from three SKiYMet specular meteor trail radars
located at equatorial-, mid- and high latitudes. The high-latitude one, the
Esrange specular meteor radar, is located only 120 km south-west of the ground

projection of the EISCAT tristatic measurement volume, making the meteor influx mea-
surements with the two systems comparable (Paper I).

4.1 EISCAT UHF OBSERVATIONS

The tristatic EISCAT 930 MHz UHF radar system consists of three 32 m paraboloids. The
transmitter/receiver is located outside Tromsø, Norway, at 69.59◦N, 19.23◦E. The two
remote receivers are sited in Kiruna, Sweden, at 67.86◦N, 20.44◦E and Sodankylä, Fin-
land, at 67.36◦N, 26.63◦E. All three antennae were pointed towards a common volume
centered at a height of 96 km, the peak of the meteor altitude distribution of previous
EISCAT UHF measurements (Westman et al., 2004). The coordinates of the common
volume is 68.88◦N, 21.88◦E and the configuration used is of tetrahedron geometry as
schematised in Figure 2. The –3 dB beamwidths of the antennae are about 0.7◦.

For meteor head echoes detected by all three receivers simultaneously, the precise
geocentric meteoroid velocity can be calculated. The velocity components measured by
the remote receivers point in the directions of the bisectors, defined in the plane spanned
by each remote receiver’s line-of-sight and the transmitter’s line-of-sight. By using the
velocity components along the bisectors and the Tromsø line-of-sight as described in de-
tail by Kero et al. (2008a) we estimate the directions of arrival as accurately as possible.

East

South

Zenith

164 km

279 km

1
6

1
 k

m199 km

391 km

9
6

 km

Sodankylä
(Finland)

Kiruna
(Sweden)

Tromsø
(Norway)

13
2 

km

Ground projection
of common volume

68.88ºN, 21.88ºE

Figure 2: Meteor observing geometry of the EISCAT UHF system. Ranges from the transmit-
ter/receiver and the two remote receivers to the common volume are indicated as well as ground
distances between the sites. The full beam widths are plotted as 1◦ and are drawn to scale.
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Table 1: Dates and times for meteor campaigns with the EISCAT UHF system.

Year Start – Stop (UT) No of events
Vernal equinox 2002 Mar 19–20, 12:00–12:00 50

Summer solstice 2005 Jun 21–22, 14:00–10:00 }
1012005 Jun 23, 10:00–14:00

Autumnal equinox 2005 Sep 21–22, 07:00–07:00 194

Winter solstice 2004 Dec 21–22, 08:00–08:00 65

Furthermore, we calculate the speed along the meteoroid trajectory as a function of time
for each meteoroid by assuming that it moves along a straight line through the measure-
ment volume. In reality, owing to the Earth’s gravity, a meteoroid will follow acurved
path but the deviation from linearity during the few kilometres of its trajectory within
the common volume is small compared to measurement uncertainties.

The results presented in Papers I and II are based on data collected with the EISCAT
UHF system in four dedicated meteor experiments. A total number of 96 h of data were
taken between 2002 and 2005, resulting in detection of 410 tristatic meteors. The dates
and times for the observations are summarized in Table 1. The seasons apply to the
northern hemisphere.

Results from the EISCAT UHF winter solstice measurements also appear in Paper IV.
There is a contradiction between the number of tristatic meteors detected during this
campaign as given in Table 1 and as stated in Paper IV. The discrepancy is due to a
search routine developed to force echoes with strong SNR (signal-to-noise ratio) de-
tected with one or two receiver/-s out of the data of the other/-s. This is possible be-
cause the automatic search routine initially finds the events with high SNR but does not
necessarily find the ones with (very) low SNR. In other words, several events have low
SNR and provide only a few data points from one or two of the receivers but good SNR
and a long series of measurements from the other/-s. A few data points from each re-
ceiver are enough for an accurate direction determination. If at least one of the receivers
provides a long sequence of data the meteoroid deceleration can also be deduced. A
more detailed description of the measurement technique and data handling is given by
Kero et al. (2008a). In this way, an additional 18 tristatic meteors have been found in the
winter solstice data since the publication of Paper IV and are included in later results
(Papers I and II).

Our tristatic data give us precise particle deceleration and radar cross sections (Kero
et al., 2008a,b), which we have compared and fitted to a single-object ablation model
with atmospheric data provided from the MSIS-E-90 atmosphere model (Hedin, 1991).
The ablation model implementation is further described in Paper II and in detail by Kero
(2008) and allows us to estimate the meteoroid atmospheric entry velocities, needed to
calculate the meteoroid orbits as described in Section 6.

The most important feature of the ablation model is that we have used four differ-
ent meteoroid densities, 0.3 g/cc for porous, 1 g/cc for cometary, 3.3 g/cc for asteroidal
and 7.8 g/cc for iron material, paired with mean molecular mass of ablated vapour of
20 u for graphite (both porous and cometary material), 50 u for silicon dioxide and 56 u
for iron respectively (Tielens et al., 1994; Rogers et al., 2005). For every meteoroid indi-
vidually, each pair of density and molecular mass was propagated down through the
atmosphere using every one of five different heat transfer coefficients, 0.2, 0.4, 0.6, 0.8
and 1 for each step through the atmosphere. Each combination was fitted to the data
by iteratively adjusting the input parameters (above-atmosphere velocity, mass, den-
sity and zenith angle) and minimizing the least-square difference between model and
measurements. Then the best of the fits was chosen and its input values used as esti-
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mates for the extra-atmospheric properties of our observed meteoroids. Thus we obtain
extra-atmospheric properties of our observed meteoroids and can determine their orbits
(see Section 6, and Paper I), magnitudes (Paper II), etc. The mass distribution found by
this method is similar to the one reported for the Advanced Research Projects Agency
Long-Range Tracking and Instrumentation Radar (ALTAIR) by Close et al. (2007).

4.2 SKIYMET SPECULAR RADAR OBSERVATIONS

In Papers III and IV, specular meteor radar data was used from three different latitudes:
Esrange, Kiruna, Sweden, at 67.88◦N, 21.12◦E; Juliusruh, Germany, at 54.63◦N, 13.40◦E;
and Ascension Island, at 7.95◦S, 14.38◦W.

Five days of data around each vernal/autumnal equinox and summer/winter sol-
stice was chosen from all data available for all three specular radars. Data periods range
from August 1999 to March 2004 for Esrange, from November 1999 to August 2001 for
Juliusruh and from May 2001 to November 2003 for Ascension Island.

The data used was recorded by a SKiYMet all-sky interferometric meteor radar at
each site (see Section 3.1). Electromagnetic pulses are radiated by the transmitter at a
pulse repetition frequency of 2144 Hz. The Esrange and Ascension Island meteor radars
operate at 32.50 MHz in the 70-110 km height range. The corresponding figures for the
Juliusruh radar are 32.55 MHz and 78-120 km. This radar was transferred to Andøya,
Norway, in September 2001 (Singer et al., 2004).





13

5 COORDINATE SYSTEMS

PHERICAL COORDINATE SYSTEMS are, for obvious reasons, the most useful
ones for mapping the sky. Indeed, mapping the sky is important when cal-
culating meteoroid orbits from radar measurements. This section contains a
summary of the coordinate systems used for orbit calculations as will be de-

scribed in Section 6. Spherical coordinates can be thought of as positions on a spherical
surface. A plane passing through the center of the sphere – intersecting it in a great cir-
cle – perpendicularly to the axis of rotation is called the primary circle. Any great circle
perpendicular to the primary circle is called a secondary circle.

5.1 THE LONGITUDE-LATITUDE SYSTEM ON EARTH

One well-known example of a spherical coordinate system is the longitude-latitude sys-
tem on Earth, where the equator is the primary circle. The meridians are secondary
circles, each of which pass through both poles. Positions are given in longitude and lati-
tude. Longitude is the shortest angular distance either in the east or west direction from
the prime meridian (through Greenwich, England) along the equator to the point where
the meridian through the point of interest crosses the equator. Latitude is the shortest
angular distance along this meridian from the equator in the north or south direction to
the point of interest.

The Earth is not a perfect sphere. Moreover, the Earth surface has gravitational ir-
regularities due to density and shape variations in the Earth’s crust (Roy, 1988). The
geocentric latitude assumes a spherical Earth, the astronomical latitude is the geocen-
tric latitude corrected for the flattening of the Earth, and the geodetic or geographic
latitude is the astronomical latitude corrected for gravity fluctuations. Geodetic latitude
is the one in most common daily use. More detailed descriptions are given by, e.g.,
Zeilik and Gregory (1998), Danby (1988) and Roy (1988).

The longitude-latitude system is, however, not sufficient to describe celestial phe-
nomena. Instead, there are a number of other spherical coordinate systems which are
more suited for that purpose. A common tool for many of the coordinate systems de-
scribed below is the celestial sphere. It is a stationary sphere with a far greater radius
than that of the Earth, surrounding and co-centered with the Earth (Roy, 1988). On the
inside of the celestial sphere, all kinds of heavenly bodies are projected.

5.2 THE HORIZON SYSTEM

The horizon, or horizontal, system of coordinates is used for local observations and is
therefore different for observers located at different sites on the Earth’s surface. A coor-
dinate system with the observer as origin of coordinates is called topocentric (Wilkins
and Springett, 1977). This implies that the coordinates for one particular object at one
particular time is location-dependent. Also, the horizon system co-rotates with the
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Figure 3: Sketch of the horizon system. N, E, S and W represent the four cardinal points North,
East, South and West respectively.

Earth and thus the coordinates for one and the same object changes with time.
The origin of the horizon system is the observer, marked with O in Figure 3. The

point where the upward vertical from the observer intersects the celestial sphere is
called zenith, the opposite of which is nadir. Let these two points span an axis. A plane
perpendicular to this axis intersects the celestial sphere at the celestial horizon and di-
vides the sphere into two hemispheres. To the observer, only the upper hemisphere is
visible, even if the actual horizon is for topographic reasons very seldom equal to the
celestial one.

The coordinates used to specify an observed object in the horizon system are the
azimuth (az) and altitude (alt), or alternatively the azimuth and the zenith distance
(zd). One of several definitions of azimuth, and the one used throughout this thesis,
is the angular distance along the celestial horizon from the north point (marked with
N in Figure 3) eastwards to the point where a vertical circle through zenith and the
observed phenomenon intersects the celestial horizon. The azimuth can range from
0◦ to 360◦. The altitude is then the shortest angular distance along this vertical circle
measured from the celestial horizon to the object. Zenith is located at 90◦ altitude. The
zenith distance is the opposite of the altitude, i.e., it is measured from zenith towards
the celestial horizon along the same vertical circle. Hence,

zd = 90◦ − alt. (1)

This description of the horizon system is adapted from Zeilik and Gregory (1998),
Roy (1988) and Green (1988).

5.3 THE CELESTIAL EQUATORIAL SYSTEM

The most important astronomical coordinate system is the celestial equatorial system,
which is illustrated in Figure 4. The two coordinates are right ascension (α) and declina-
tion (δ), which closely correspond to the terrestrial longitude and latitude, respectively.
The plane of the Earth equator cuts the celestial sphere in a great circle. This circle is the
primary circle of the celestial sphere and is called the celestial equator. Extending the
rotational axis of the Earth, it will intersect the celestial sphere at the north and south
celestial poles.

Just like the meridians of longitude of the longitude-latitude system, meridians of
right ascension (or hour circles) are secondary circles, each of which pass through both
poles. Right ascension is measured from the celestial equator and has positive values
towards the north celestial pole and negative values towards the south celestial pole.
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Figure 4: Illustration of the celestial equatorial system with reference to Earth and its orbit.
The celestial equator is inclined at 23◦27′ (Roy, 1988) to the ecliptic plane. The figure also in-
dicates the position of the sun at the northern vernal equinox ($). This figure is created by
Dennis Nilsson and is licensed under the Creative Commons Attribution 3.0 Unported License
(http://creativecommons.org/licenses/by/3.0/).

Parallels of declination are, just like parallels of latitude, small circles parallel to the
celestial equator. Right ascension is measured eastwards either in degrees, or in hours,
minutes and seconds of time. The Earth orbits the sun in what is known as the ecliptic
plane and it intersects the celestial sphere in a great circle called the ecliptic. The Earth’s
rotational axis makes an angle of 23◦27′ with the normal to the plane of ecliptic and is
termed the obliquity of the ecliptic (ε). The point of zero right ascension is defined at
one of the two nodes where the ecliptic plane intersects the celestial equator – at the one
where the sun crosses the celestial equator from south to north. This point corresponds
to the position of the sun at the northern vernal equinox (!), also called the first point of
Aries. Since the Earth rotates, the celestial equatorial system appears to rotate 360◦ each
solar day, or in 24 h, in the westward direction as seen from the Earth surface. Thus, the
relationship between measuring the right ascension in degrees or time is:

24h = 360◦. (2)

Furthermore,

1h = 15◦, 1m= 15′, 1s = 15′′, (3)

and

1◦ = 4m, 1′ = 4s, 1′′ =
1
15

s

. (4)

A more exhaustive description of the celestial equatorial system can be found in any
book on astronomy, e.g., Zeilik and Gregory (1998) and Green (1988).
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Figure 5: Sketch of the ecliptic system in reference to Earth (⊕) and the Earth/celestial equator.
The equator is inclined by ε = 23◦27′ (Roy, 1988) to the ecliptic plane. The equator and the ecliptic
plane cross at the northern vernal equinox ($) and the northern autumnal equinox (%). How to
specify the ecliptic longitude (λ) and ecliptic (β) of an object is also indicated.

5.4 THE ECLIPTIC SYSTEM

The fundamental plane of reference of the ecliptic system is the plane of ecliptic, as is
visualized in Figure 5. It intersects the celestial equator at two points, at the northern
vernal equinox and the northern autumnal equinox ("). The poles of the ecliptic are
defined where the normal to the ecliptic plane intersects the celestial sphere, at an angle
equal to ε to the Earth rotational axis. The north ecliptic pole is the one located on the
same side of the ecliptic as the north celestial pole.

At any instant, the sun lies in the ecliptic. Therefore, in addition to the diurnal mo-
tion of the sun, in one year it traces out the ecliptic as it moves eastwards about 1◦ per
day as seen from Earth.

The quantities used to describe the position of a target is ecliptic longitude (λ) and
latitude (β). The ecliptic longitude is the angular distance in the eastward direction from
the vernal equinox (just like the right ascension) along the ecliptic to the point where a
great circle through the poles of the ecliptic and the position of the object crosses the
ecliptic. The ecliptic latitude is the angular distance along the same great circle from
the ecliptic to the target. Ecliptic latitude is positive towards the north ecliptic pole and
negative towards the south one.

In most cases, the origin of the ecliptic system is chosen to be either the center of
the Earth or the center of the Sun. Here we only consider the center of the Earth as the
origin.

A useful application of the ecliptic system, e.g., when plotting meteor radiants, is to
subtract the ecliptic longitude of the sun (it is always located at β = 0) from the position
of the target, putting the sun at λ = 0 for all observations. This is called the sun-centered
longitude (λ − λ#). The Sun is situated at 90◦ ecliptic longitude at summer solstice, at
180◦ at autumnal equinox and at 270◦ at winter solstice.

For more information, the reader may consult, e.g., Roy (1988) and Green (1988).
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Figure 6: Sketch of the galactic system in reference to the ecliptic. The symbols and variables are:
" represents the sun, C is the direction of the galactic center as seen from the sun, NC and NG are
the north celestial and the north galactic pole respectively, l and b are the the galactic longitude
and latitude of an object and Θ is the angle between C and NC .

5.5 THE GALACTIC SYSTEM

Describing positions and/or motions of stars or interstellar particles, the plane of the
galaxy is a natural reference plane. At each end of the normal to this plane, we have
a pole; the one on the same side of the galactic plane as the celestial north pole (NC)
is defined as the north galactic pole (NG). The galactic plane cuts the celestial sphere
in a great circle termed the galactic equator, as drawn in Figure 6. The galactic and the
ecliptic equators meet in two nodes.

The galactic latitude (l) and the galactic longitude (b) are measured in the same man-
ner as the geodetic latitude/longitude and the ecliptic latitude/longitude. The reference
point of the galactic longitude is the direction to the center of the galaxy (C) from the
sun (#), the sun being located at the origin of the galactic system.

To relate the equatorial coordinates and the galactic coordinates of the same celestial
object, the right ascension and declination of NG (αG, δG) and the angle between C and
NC (Θ) must be known. It is important to stress that since the north celestial pole has a
precessional movement (because it is aligned with the rotational axis of Earth), αG, δG

and Θ change and thus the epoch for which they apply has to be specified. The adopted
values of the equatorial coordinates for NG for the Julian year 2000 are (Cox, 2000)

αNG = 12h51m26s28 = 195.86◦,
δNG = +27◦7′41′′.70 = +27.13◦,

θ = 122.93◦.
(5)

More detailed descriptions on the galactic coordinates can be found in, e.g., Green
(1988) and Roy (1988).
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6 METHODOLOGY OF ORBIT
CALCULATIONS

UR TRISTATIC EISCAT UHF data give us precise particle deceleration and radar
cross section, which we have compared and fitted to a single-object numerical
ablation model (Section 4.1). Orbit calculations start with the atmospheric
entry velocity (V∞) of the meteoroids obtained from the ablation model, the

dates and times, zenith distance (zd) and azimuth (az) (Section 5.2) for the events as
well as the coordinates of the common volume. The common volume of the transmitter
and the two receiver antenna beams is located at geodetic latitude Φ = 68.88◦ · π/180
(radians) and western geodetic longitude Λ = −21.88◦ · π/180 (radians). The code we
have used in this section is based on a translation from a prototype procedure developed
by D. D. Meisel. It has been tested on jointly-held data in cooperation with him. This
code is an enhanced version of a radar meteor orbit calculation program synthesized
from algorithms presented in Dubyago (1961), Danby (1988) and Wilkins and Springett
(1977) under supervision of D. D. Meisel. Unreferenced details are obtained in personal
communication with D. D. Meisel. The results are presented in Paper I. Details of the
corrections and the method of calculation follow.

6.1 CORRECTING FOR THE FLATTENING AND ROTATION
OF THE EARTH

The first effect we take into account when calculating the meteoroid orbits is the par-
allax due to the displacement of the observer from the centre of Earth. To do this, the
flattening of the Earth (f ) needs to be taken into account. It equals the relative difference
between the equatorial and polar radius of the Earth and f = 1/298.257 (Seidelmann,
1992). The normalised distance from the center of the Earth to the ground projection of
the common volume (in units of Earth equatorial radius) can be expressed as

ρcv =
√

C2 · (cos2 Φ + (1− f)4 · sin2 Φ) (6)

(Wilkins and Springett, 1977), where Φ is the the geodetic latitude of the common vol-
ume and C is defined as

C = (cos2 Φ + (1− f)2 · sin2 Φ)−1/2 (7)

(Wilkins and Springett, 1977). Then, the distance to the common volume (km) is

rcv = ρcv · R⊕ + H, (8)

where R⊕ is the equatorial radius (km) of the Earth and H is the height of the common
volume (km). This is used to correct the meteoroid velocities for the Earth’s rotation. To
do that, we need to calculate how our observational point propagates eastwards with
the Earth (Veast). The rotation rate of the Earth is

ω⊕ = 2π/sidereal day = 7.2921159 · 10−5 radians/s, (9)
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thus
Veast = rcv · ω⊕. (10)

The Earth’s velocity (km/s) along our line-of-sight, or trajectory, depends on the az-
imuth (az) and zenith distance (zd) of the observed meteoroid:

∆V = Veast · sin az · sin zd · cosΦ. (11)

Since we want to subtract the Earth’s rotation from the observed meteoroid velocity
(km/s) that has been integrated backwards up to the top of the atmosphere, the cor-
rected velocity (km/s), i.e. the geocentric velocity, becomes

Vg = V∞ −∆V. (12)

6.2 SOLAR COORDINATES

The aim with the next few equations is to calculate the ecliptic longitude of the Earth’s
apex at the time of meteor detection. A way to do this is to consider the sun mov-
ing around the Earth in an elliptical orbit. The equations are taken from Wilkins and
Springett (1977).

We start with the longitude of the sun (radians), l#, for which we need the solar
longitude of periapsis (degrees) (see Section 6.6 and 6.6.8)

ω# = 281.220844 + 1.719175 · t0 + 4.5277778 · 10−4 · t20 + 3.333334 · 10−6 · t30, (13)

the mean anomaly of the sun (degrees)

m# = 358.475833 + 35999.04975 · t0 − 1.5 · 10−4 · t20 − 3.3 · 10−6 · t30, (14)

and the eccentricity of the sun’s orbit (or in reality of the Earth’s orbit)

e# = e⊕ = 0.01675104− 0.00004180 · t0 − 0.0000000126 · t20. (15)

In equations (13)-(15), t0 is the number of Julian centuries of 36 525 days from the epoch
of Dublin Julian Day (DJD) to the date of observation. The DJD epoch is noon UT
1900 January 0 (1899 December 31) and relates to the Julian Day (JD) as

DJD = JD − 2415020.0. (16)

The longitude of the sun (radians) is calculated as

l# =
(

ω# + m# + 2 · e# · sin m# +
5 · e2

# · sin 2m#

4

)
π

180
, (17)

and is the position of the sun as seen from Earth, at At vernal equinox, l# = 0.
Next we need the eccentric anomaly of the sun (E#) “in orbit around Earth” (the

concept of eccentric anomaly is discussed in Sections 6.6 and 6.6.5) and the solar distance
(r#) from the centre of the Earth. We can use the mean anomaly of the sun and the
eccentricity to calculate both. The relation between m#, e# and the eccentric anomaly
(E#) is:

E# = m# + e# · sin E# (18)

(Murray and Dermott, 1999). The above equation can be solved iteratively for small
values of the eccentricity (e < 0.6627), as explained by, e.g., Roy (1988). We have used
the first three terms of the expansion in powers of e# to calculate the eccentric anomaly
of the sun (radians):

E# = m# +
(

1−
e2
#
8

)
· e# · sin m# +

e2
# · sin 2m#

2
+

3 · e3
# · sin 3m#

8
. (19)
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Knowing E#, the solar distance (AU) from the centre of Earth is trivial:

r# = a# · (1− e# · cos E) (20)

(Murray and Dermott, 1999), where a# (AU) is the semi-major axis of the Earth’s orbit
around the sun. Both E# and r# are calculated at the time of the meteoroid detection.
Then the velocity (km/s) of the sun in its orbit around the Earth is

v#x =
−29.784767

r#
· sinE# (21)

along the semi-major axis and

v#y =
29.784767

r#

√
1− e# · cos E# (22)

along the minor axis. The number 29.784767 in equations (21) and (22) is the mean
orbital speed of Earth (km/s) (Seidelmann, 1992). Thus the full solar velocity (km/s) is

v# =
√

v2
#x + v2

#y. (23)

Now, if we switch from envisaging the sun from the Earth to looking at the Earth from
the sun, the Earth’s velocity will be of the same magnitude as the sun’s velocity, but
in the opposite direction. Consequently, by reversing the solar velocities, the velocities
represent the Earth’s velocity towards its apex and we can calculate the ecliptic longi-
tude (radians) of the apex (Danby, 1988)

lapex = tan−1 −v#y

−v#x
+ ω#. (24)

6.3 ABERRATION AND ZENITH ATTRACTION CORRECTION

Before we continue with more corrections, we need to calculate some quantities. First
we convert the zenith distance (zd, radians) to altitude (alt, radians)

alt =
π

2
− zd, (25)

as explained in Section 5.2. Then we calculate the Greenwich mean sidereal time (de-
grees) at 0h UT

θG = 100.46061837 + 36000.770053608 · t + 0.000387933 · t2, (26)

where t is the number of Julian centuries of 36 525 days from the epoch J2000.0 to the
date of observation. The J2000.0 epoch is 2000 January 1, 11:58:55.816 UTC and is related
to the Julian Day (JD) as

DJD = JD − 2451545.0 (27)

(compare with Equation (16)). To calculate the Greenwich mean sidereal time for the
time of detection, θG needs to be corrected by the time of day

θ1 = θG + (hour · 15.041 + min · 0.25068 · sec · 0.0041781) · 1.0027337909 (28)

and converted into radians. Earth rotates 360◦ each sidereal day, i.e., each 23h56m4.09054s.
Thus Earth rotates 15.041◦ per hour, 0.25068◦ per minute and 0.0041781◦ per second.
Since our times are given in mean solar days, we need to multiply by 1.0027337909, the
length of a mean sidereal day expressed in mean solar days (Seidelmann, 1992; Danby,
1988).
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Next we need to convert the altitude and azimuth to hour angle (h), right ascension
(α) and declination (δ). The celestial equatorial system is described in Section 5.3. The
formulae connecting these coordinates can be thought of as correction cosines and are:

cX = cos δ · cos h= cos Φ · sin alt− sinΦ · cos alt · cos az, (29)
cY = cos δ · sin h=− cos alt · sin az, (30)

and

cZ = sin δ = sin Φ · sin alt + cos Φ · cos alt · cos az (31)

(Wilkins and Springett, 1977). Evidently, the hour angle (radians) is given by

h = tan−1 cY

cX
(32)

and the declination (radians) by
δ = sin−1 cZ . (33)

The right ascension (radians) is obtained from the equation

α = local sidereal time− h = θ1 − Λ− h, (34)

where Λ = −21.88◦ · π/180 (radians) is the geodetic western hemisphere longitude (see
Section 5.1) of the common volume.

However, the position of the radiant of the observed meteoroid depends on the mo-
tion of the observer. The observer is in this case is the measurement volume and it
moves with the rotational velocity of Earth. This causes an effect similar to the diurnal
aberration of celestial bodies (Dubyago, 1961) and depends on the time of observation
as well as the position of the observer. By changing the velocity of light for the velocity
of the meteor in the formulae for diurnal aberration, the correction in right ascension
(radians) and declination (radians) can be obtained (Dubyago, 1961) from

∆α = − 2 · π · rcv

86164.09054
· 1
Vg · cos δ

· cos φ · cos h, (35)

∆δ = − 2 · π · rcv

86164.09054
· 1
Vg

· π

180
· cos φ · sin h · sin δ, (36)

where the number 86 164.090 54 is a sidereal day in seconds and φ is the geocentric
latitude (described in Section 5.1) of the common volume and is given by

φ = tan−1
((

1− f2
)
tan Φ

)
. (37)

Thus the values corrected for aberration, indicated with subscript 1, are

α1 = α + ∆α (38)

and

δ1 = δ + ∆δ. (39)

Now we can convert the right ascension and declination back to zenith distance and
azimuth to perform the zenith attraction correction before we once again go back to
right ascension and declination. To begin with, we need to calculate the corrected hour
angle (radians)

h1 = θG − Λ− α1. (40)
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Figure 7: Illustration of the zenith attraction. The blue circle is Earth. The meteoroid comes in on
a hyperbolic trajectory ADC. The meteor is detected at point D, for simplicity in the direction of
the observer’s zenith, Z. The observer is observing from point O. When detecting a meteor, we
see it coming from the tangent BD to its actual orbit. Thus the zenith distance measured is zd1

while the real zenith distance is zd2. From the figure it is evident that zd1 < zd2 and the difference
is the angle Ψ. This figure is inspired by the drawing of the zenith attraction in Dubyago (1961).

The conversion cosines are:

cX1 = cos alt · cos az= sin δ1 · cos φ− cos δ1 · cos h1 · sin φ, (41)
cY1 = cos alt · sin az=− cos δ1 · sin h1, (42)
cZ1 = sin alt = sin δ1 · sin φ + cos δ1 · cos h1 · cos φ, (43)

where φ (radians) is the corresponding latitude to Φ if the Earth was spherical. The
corrected altitude (radians) is easily calculated as

alt1 = sin−1 cZ1 , (44)

which gives the corrected zenith distance (radians) as

zd1 =
π

2
− alt1. (45)

A meteor seems to come from a more vertical direction, with a smaller zenith dis-
tance, than it actually does. The reason for this is Earth’s gravity, which, makes the
particle bend towards the center of the Earth. What we measure is thus the tangent to
the meteoroid’s curved path at our location (Dubyago, 1961). This effect is called zenith
attraction, or hyperbolic attraction of the Earth, and is illustrated in Figure 7. Also, the
hyperbolic attraction of the Earth will accelerate the meteoroid. According to Dubyago
(1961) the corrected velocity (km/s) is calculated as

V2 =
√

V 2
g − 2 · g · rcv, (46)

where Vg (km/s) is the geocentric velocity of the meteoroid, i.e., the meteoroid velocity
corrected for the Earth’s rotation (eq. (12)), ρcv (km) is the normalized distance from
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the centre of the Earth to the ground projection of the common volume (eq. (6)) and g
(km/s2) is the strength of the Earth’s gravity field at the common volume. The accel-
eration of gravity is given by the universal law of gravitation combined with Newton’s
second law (km/s):

g = G
M⊕
r2
cv

, (47)

where G is the gravitational constant of the universe expressed in km3kg−1s−2 and M⊕
is the mass of Earth (kg). The correction angle Ψ (radians) for the zenith distance is
derived in Dubyago (1961):

tan
1
2
Ψ =

Vg − V2

Vg + V2
· tan

zd1

2
. (48)

Rearranging equation (48) for Ψ,

Ψ = 2 · tan−1 Vg − V2

Vg + V2
· tan

zd1

2
. (49)

The radiant position corrected for aberration and zenith attraction is indicated with sub-
script 2 and is

az2 = tan−1 cY1

cX1

, (50)

zd2 = zd1 + Ψ, (51)

and

alt2 =
π

2
− zd2. (52)

Equations (29), (30) and (31) are useful again, but with az2, alt2 and φ instead of az, alt
and Φ respectively, when converting the new radiant position back to right ascension
and declination. Then,

h2 = tan−1 cY

cX
, (53)

α2 = θ1 − Λ− h2, (54)

and

δ2 = sin−1 cZ . (55)

6.4 ECLIPTIC RADIANT

We are now ready to transform the geocentric radiant into ecliptic coordinates, which
are presented in Section 5.4. The conversion equations from right ascension and decli-
nation to ecliptic longitude, λ (radians), and latitude, β (radians), are

cX2 = cos β · cos λ=cos δ2 · cos α2, (56)
cY2 = cos β · sin λ=sin ε · sin δ2 + cos ε · cos δ2 · sin α2, (57)

and

cZ2 = sin β =cos ε · sin δ2 − sin ε · cos δ2 · sin α2, (58)
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where ε (radians) is the obliquity of the ecliptic, i.e., the angle between the ecliptic plane
and the Earth’s orbital plane around the sun (Wilkins and Springett, 1977). This angle
has the form

ε =
(
23.452− 0.01301 · t0 − 1.64 · 10−6 · t20 + 5.03 · 10−7 · t30

) π

180
, (59)

where t0 is described in Section 6.2 (Wilkins and Springett, 1977). The long time varia-
tion of ε is due to the Earth axis precession and is about 1◦ in 100 000 years. Equations
(56)-(58) give

λ = tan−1 cY2

cX2

, (60)

and
β = sin−1 cZ2 , (61)

and are the ecliptic coordinates of the radiant of the meteoroid in the Earth’s frame of
reference, i.e., where the meteoroid is coming from. The sun-centered ecliptic longitude
(radians) of the meteor radiant with geocentric velocity (Earth’s velocity not subtracted)
can now be calculated:

λ# = λ−
(
lapex +

π

2

)
. (62)

The ecliptic longitude of the sun is always located +π
2 from the ecliptic longitude of the

apex and consequently, +π
2 needs to be added to it.

6.5 TRUE HELIOCENTRIC RADIANT

Next we have to calculate the true heliocentric radiant, in other words subtracting the
orbital velocity of the Earth. This is done through a set of auxiliary angles n, γ and N
adopted from Dubyago (1961). To begin with, the coordinates relative to the apex have
the following relationship

dX1 = sin n · cos γ= sin(λ− lapex) · cos β, (63)
dY1 = sin n · sin γ= sinβ, (64)

and

dZ1 = cos n = cos(λ− lapex) · cos β. (65)

These directions can be thought of as a coordinate system rotating with and centered
at Earth with the x axis pointing towards the sun, the y axis towards the North Ecliptic
Pole (NEP) and the z axis towards the apex. Solving for γ, we get

γ = tan−1 dY1

dX1

. (66)

This angle tells us where the meteor radiant is located with respect to the ecliptic, i.e.,
the angle between the ecliptic and the meteoroid radiant projected onto the xy plane.
Then, the component of the radiant direction perpendicular to the apex direction can be
determined as

dQ =
dY1

sin γ
, (67)

and the angle between the meteor radiant and the apex as

n = tan−1 dQ

dZ
. (68)
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Using n, we can subtract the Earth’s velocity from the meteoroid velocity, i.e., correct it
for heliocentric velocities, to obtain the meteoroid heliocentric velocity Vh:

Vh =
√

V 2
2 + v2

# − 2 · V2 · v# · cos n. (69)

Next we need to determine the angle N between the heliocentric velocity of Earth (V#)
and the heliocentric velocity of the meteoroid (Vh):

sin(N − n) =
v#
Vh

sin n

N = sin−1

(
v#
Vh

sin n

)
+ n.

(70)

Subtracting the Earth’s velocity means that we stop the dX1 , dY1 and dZ1 coordinate
system from rotating and fixing it at the instance where the meteoroid was detected.
Switching n to N in equation (63)-(65), we get the relationships

dY2 = sin N · cos γ=sin(λ0 − lapex) · cos β0, (71)
dZ2 = sin N · sin γ =sinβ0, (72)

and

dX2 = cos N =cos(λ0 − lapex) · cos β0. (73)

where dX2 points towards the apex, dY2 towards the sun and dZ2 towards NEP and β0

(radians) and λ0 (radians) are the true ecliptic coordinates of the heliocentric velocity at
Earth, which is the same as the direction of the radiant. Equations (73)-(72) give

β0 = sin−1 dZ2 , (74)

and

λ0 = tan−1 dY2

dX2

+ lapex. (75)

6.6 ORBITAL ELEMENTS

A standard way of specifying an orbit uniquely is to use a set of six orbital elements
called Keplerian elements. These are inclination (i), longitude of the ascending node
(Ω), arguments of perihelion (ω), eccentricity (e), semi-major axis (a) and true anomaly
(ν). Some of the orbital elements are sketched in Figure 8.

The inclination describes the tilt of the orbital plane. It is the angular distance of the
orbital plane from the plane of reference, in this case the ecliptic. Orbits with 0◦ ≤ i <
90◦ are prograde while orbits with 90◦ < i ≤ 180◦ are retrograde. If an orbit has an
i %= 0, then it has two nodes. The two nodes of an orbit are the points where the orbital
plane crosses the plane of reference to which it is inclined. The ascending node (#) is the
node at which the celestial body moves from below to above its plane of reference; the
descending node ($) is the opposite point. The longitude of the ascending node is then
the angle from a reference direction to the direction of the ascending node, measured in
the reference plane.

The argument of perihelion is the angle from the ascending node, measured in the
orbital plane, to the periapsis, which in our case, when the sun is the central body, is
the same as the perihelion. The eccentricity describes the shape of the orbit: e = 0 for
circular orbits, 0 < e < 1 for elliptic orbits, e = 1 for parabolic trajectories and e > 1 for
hyperbolic orbits. The size of the orbit is determined by the semi-major axis.

For our purposes, we have determined some of the orbital elements described above
and some others relevant for this work.
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Figure 8: Plot showing the orbital elements and more for an orbital plane inclined to the ecliptic.
This figure is created by Árpád Horváth and is licensed under the Creative Commons Attribution
ShareAlike 2.5 License (http://creativecommons.org/licenses/by-sa/2.5/).

6.6.1 INCLINATION

The inclination can be calculated as the angle between the normal to the orbital plane,
i.e., the direction of the angular momentum, and the normal to the reference plane, in
our case the z axis, which points towards NEP (eq. (72)). Thus the magnitude of the
cosine (along the z axis) and the sine (in the ecliptic plane) components of the angular
momentum is (Dubyago, 1961):

cL = r# · Vh · cos β0 · sin(λ0 − l#), (76)
sL = r# · Vh · |sinβ0|. (77)

The angular momentum is then given by Pythagoras’ theorem:

L =
√

c2
L + s2

L. (78)

The inclination (radians) of the angular momentum is now easily obtained:

i = cos−1 cL

L
. (79)

6.6.2 SEMI-MAJOR AXIS

The semi-major axis (see Figure 9) of the meteoroid orbit (a) can be obtained directly in
AU from (Dubyago, 1961)

1
a

=
2
r#
− V 2

h , (80)

if the meteoroid orbital velocity is multiplied with the quantity

D · 1000
k · AU

, (81)

where D is the mean solar day in seconds (86 400 s), k = 0.01720209895 AU3/2m−1/2
# D−1

is the Gaussian gravitational constant and AU is one astronomical unit expressed in m.
The Gaussian gravitational constant is the gravitational constant of the universe, G,
expressed in units of the solar system rather than SI units.
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Figure 9: Sketch of the perihelion distance (Q), the aphelion distance (q) and the semi-major axis
(a) of an ellipse.

6.6.3 ECCENTRICITY

According to Dubyago (1961), the eccentricity of the meteoroid orbits can be calculated
from the equations

sν = e · sin ν =
L · cos i

r# · tan(λ0 − l#)
, (82)

and

cν = e · cos ν=
L

r#
− 1, (83)

(84)

where ν is the true anomaly. We will deal with ν later (Section 6.5). The eccentricity is
obtained by squaring equations (82) and (83) and then adding them together:

e2 · sin2 ν + e2 · cos2 ν = s2
ν + c2

ν

e2(sin2 ν + cos2 ν) = s2
ν + c2

ν

e2 = s2
ν + c2

ν

e =
√

(s2
ν + c2

ν).

(85)

6.6.4 PERIHELION AND APHELION DISTANCE

In the case of an elliptical orbit around the sun, perihelion is the point in the orbit that
is closest to the sun and aphelion is the point farthest from the sun, as illustrated in
Figure 9. A hyperbolic orbit has only a perihelion and no aphelion. The perihelion (Q)
and the aphelion distance (q) are the shortest and largest distances between the foci and
the ellipse respectively. In a circular orbit, Q, q and a are all the same, namely equal to
the radius.

Both quantities are easily calculated when we already know the semi-major axis (a)
and the eccentricity (e) of the orbits (eq. (80), (85); Dubyago (1961)),

Q = a · (1− e), (86)
q = a · (1 + e). (87)
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Figure 10: Illustration of the true (ν) and the eccentric anomaly (E).

6.6.5 TRUE AND ECCENTRIC ANOMALY

The next two quantities to be determined are the true and the eccentric anomaly; both
are drawn in Figure 10. The true anomaly (ν) is the angle between the direction of peri-
helion and the position of the meteoroid in its orbit, as seen from the sun (Danby, 1988).
To describe the eccentric anomaly (E) we need to draw a reference circle around the
orbital ellipse with radius a. The eccentric anomaly is then the angle between the direc-
tion of perihelion and the position of the meteoroid projected onto the auxiliary circle
by a perpendicular to the semi-major axis through the true position of the meteoroid, as
seen from the centre of the ellipse.

If we go back to Section 6.6.3, equations (82) and (83) contain ν (radians), and it is
time to take advantage of that. Dividing equation (82) with (83), we get

ν = tan−1 sν

cν
. (88)

The relation between ν and E (radians) is (Murray and Dermott, 1999)

tan
ν

2
=

√(
1 + e

1− e

)
· tan

E

2
. (89)

Solving equation (89) for E,

E = 2 · tan−1

(
tan

ν

2
·

√(
1− e

1 + e

))
. (90)

6.6.6 TIME FROM PERIHELION

Time from perihelion (∆t) is, as the name indicates, the time in days from the particle’s
perihelion passage to detection. A positive ∆t means a postperihelion particle, while a
negative ∆t means a preperihelion particle. An equation for calculating the time from
perihelion is derived in Dubyago (1961) and solving for ∆t gives

∆t =
|a|2/3

k
(E − e · sin E) . (91)

The reason for taking the absolute value of the semi-major axis is that it is negative for
hyperbolic orbits and thus would result in the wrong sign on the time from perihelion.
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6.6.7 LONGITUDE OF THE ASCENDING NODE

Since the Earth’s orbit is in the ecliptic, we only observe meteoroids when they are
either at their ascending (#) or descending node ($), i.e., when they cross the ecliptic in
their orbit. To clarify, if we detect a particle coming from the equator, we detect it at its
ascending node, if it comes from the direction of the pole, we detect it at its descending
node. For illustration, see Figure 8.

The longitude of the ascending node (Ω) equals the ecliptic longitude of the sun
(l#, eq. (17)) as seen from the Earth if the meteoroid is detected at its descending node,
that is when the meteor radiant is located at positive ecliptic latitude, β0 > 0 (eq. (74)).
However, if β0 < 0, then the meteoroid is at its ascending node instead and Ω is the
ecliptic longitude of the sun +π term. This is because the longitude of the sun is seen
from the Earth while the longitude of the ascending node is seen from the sun. When the
meteoroid is in its ascending node, then the two directions are opposite to each other,
thus the +π. When the meteoroid is in its descending node, then the direction to the
ascending node is in the same direction from both the sun and the Earth.

Finally, the equation for the longitude of the ascending node (radians) is:

Ω = l# +
(

1− β0

|β0|

)
· π

2
. (92)

6.6.8 ARGUMENT OF PERIHELION

The argument of perihelion, or periapsis, is the angle between the ascending node and
perihelion in the orbital plane as seen from the sun. Since we observe the meteoroids
either in their ascending or descending node (see Section 6.6.7), we know that if we
add the argument of perihelion (ω) and the true anomaly (ν, eq. (88)) we get either π
or 2π. Therefore, if we detect the meteoroid in its descending node (β0 > 0, eq. (74)),
then ω = 2π − ν − π = π − ν. If we detected it in its ascending node instead (β0 < 0),
ω = 2π − ν, which is the same as −ν if we keep the argument of perihelion within
0 ≤ ω ≤ 2π. Thus we can calculate the argument of perihelion (radians) using β0 to
know which of the two cases we have:

ω =
(

β0

|β0| + 1
)

· π

2
− ν. (93)

6.6.9 PERIOD

The orbital period (T ) in seconds for a small body orbiting a central body is determined
by the equation (Danby, 1988)

T = 2π

√
a3

G · M , (94)

where G is the gravitational constant of the universe and M is the mass of the central
body. Conveniently enough, if T is measured in years, a is expressed in AU and the
central body is the sun, the period can be obtained extremely easily:

T =
√

a3 (95)

(Danby, 1988). Intuitively, the orbital period can only be calculated for bound orbits.
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7 SUMMARY OF THE INCLUDED PAPERS

7.1 PAPER I: ORBIT CHARACTERISTICS OF THE TRISTATIC
EISCAT UHF METEORS

The observed velocities of the 410 tristatic EISCAT UHF meteors (see Section 4.1) are
integrated back through the Earth’s atmosphere to find their atmospheric entry veloci-
ties. The integration is performed using an ablation model, the particulars of which are
outlined in Paper II and described in detail by Kero (2008). From the entry velocities,
meteoroid orbits are calculated according to the description in Section 6. The results are
presented in the form of different orbital characteristics.

None of the observed meteors are of clear interstellar origin; comets, particularly
short period (< 200 years) ones, may be the dominant source for the particles observed.
Almost half of the EISCAT UHF meteors are observed to radiate from the direction of
the Earth apex. Furthermore, 58% of the orbits are retrograde. Only 33 orbits (8%) have
an inclination < 30◦, but their locations in the a/e diagram indicate that it is unlikely
that any of them are of asteroidal origin.

The location of the EISCAT UHF system close to the Arctic Circle means that the
North Ecliptic Pole (NEP) is near zenith once every 24 h, i.e., during each observational
period. The meteoroid influx when NEP passes close to zenith should therefore be di-
rectly comparable throughout the year. Considering only the hour when NEP is closest
to zenith, the EISCAT UHF head echo rate is about a factor of three higher at summer
solstice than during the other observing periods.

7.2 PAPER II: ESTIMATED VISUAL MAGNITUDES OF THE
EISCAT UHF METEORS

The purpose of the study presented in this paper was to investigate the requisites and
suitable conditions for simultaneous meteor observations with telescopic optical de-
vices and the EISCAT UHF system. Simultaneous high-resolution optical and radar
observations of meteors are of great importance for the further understanding of the
meteoroid-atmosphere interaction processes and the physics of the head echo.

The absolute visual magnitudes of the EISCAT UHF meteors are shown to be in the
range of +9 to +5 and should be observable using intensified CCD or EMCCD (Electron
Multiplying CCD) cameras with telephoto lenses.

Because of the general problem of interference from the high-power transmitter
equipment on the optical instruments, the Tromsø site is an inappropriate camera lo-
cation. In the paper we propose to use two cameras, one collocated with the Kiruna
receiver to enable direct comparisons between radar and optical observations and a sec-
ond one located in Kilpisjärvi, Finland, at 69.02◦N and 20.86◦E, providing a good com-
plement to observations made in Kiruna. The elevation angle to the common volume is
65◦ and the azimuth makes almost a right angle with the Kiruna site azimuth.

As the EISCAT UHF system is located above the Arctic Circle, it is proposed that
this study should be scheduled around or after autumnal equinox and when the moon
is close to new.
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7.2.1 FURTHER COMMENTS

The study suggested in Paper II was achieved in October 2007 as a joint campaign be-
tween IRF (the Swedish Institute of Space Physics) and the UWO (University of Western
Ontario) Meteor Group providing two telescopic optical devices with telephoto lenses.
One of the cameras was positioned in Kiruna, the other one in Peera, Finland, at 68.89◦N
and 21.06◦E, about 20 km from Kilpisjärvi. The reason for the change of location was
that the available site in Kilpisjärvi suffers from light pollution from the main road.
The observation campaign resulted in 5 meteors observed with all three EISCAT UHF
receivers and both cameras. The results will be presented in a future paper.

7.3 PAPER III: LATITUDINAL VARIATIONS OF DIURNAL
METEOR RATES

This paper investigates diurnal meteor rate differences at different latitudes using spec-
ular meteor radar measurements from Esrange, Kiruna, Sweden, at 68◦N; from Juliusruh,
Germany, at 55◦N; and from Ascension Island, at 8◦S.

Radars at different latitudes see different sporadic meteor sources. The sources vary
with season because of the tilt of the Earth axis. Thus the diurnal meteor event rate
is found to differ between latitudes, with a larger seasonal variation at higher lati-
tudes. The largest difference in amplitude of the diurnal flux variation (from morning
to evening) is at equatorial latitudes and it is almost the same throughout the year. The
lowest diurnal flux variation is found at polar latitudes, where the observations pre-
sented in this paper show the highest degree of seasonal variation of the diurnal flux.

7.4 PAPER IV: RADAR STUDIES OF THE SPORADIC
METEOROID COMPLEX

This paper reports on sporadic meteor radiant distributions at high-, mid- and equa-
torial latitudes for different parts of the day at vernal/autumnal equinox and sum-
mer/winter solstice. Data used is collected by three specular meteor radars. The in-
vestigation shows a variation in the sources with both latitude and time of day. The
paper also provides a review of how radiants for specular meteor trail detections are
statistically determined.

Preliminary results are presented from the 2004 winter solstice EISCAT UHF cam-
paign. The 47 observed tristatic meteors have geocentric velocities between about 15
and 67 km/s.

7.4.1 FURTHER COMMENTS

It should be noted that by methods described in Section 4.1, an additional number of 18
tristatic meteors have been found in the winter solstice data since the publication of this
paper, which are included in later results (Papers I and II).
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7.5 PAPER V: QUANTITATIVE COMPARISON OF A NEW
AB INITIO MICROMETEOR ABLATION MODEL

An ab initio meteor ablation model has been constructed for the mass range 10-16 to
10-7 kg, devised for meteor head echo detections with the Arecibo Observatory 430 MHz
UHF radar (AO). The faint end of this range cannot be observed by any other method,
thus observational verification of the model is not possible. On the other hand, the
EISCAT UHF system detects micrometeors in the high mass part of this range, is fitted to
a standard ablation model and is observationally confirmable, as described in Paper II.
The current paper presents a preliminary comparison of the ab initio and the standard
model.

The largest difference between the two models is that the ab initio one uses mostly
experimentally-determined data – for the heat transfer, thermal emissivity, the most
important meteoroid elements and their oxides, as well as luminosity efficiency – which
is the reason why we call it an ab initio model.

The initial and preliminary comparison of the two models show that the ab initio
model will provide a useful extension of meteor ablation theory to the majority of the
AO detected micrometeoroids. Further two model comparisons will be useful to under-
stand any comprehensive comparison between the EISCAT and AO radar data.





35

ACKNOWLEDGEMENTS

T THE beginning of time, when I started my PhD studies, the time span of
five years felt never-ending. Yet the weeks added up to months, the months
to years and here I am. I have gained a lot of knowledge, insight and under-
standing, not only in research but also in life and about myself. However, this

thesis would never have been written without the help of others.
First of all, I would like to thank my supervisor Asta Pellinen-Wannberg for giving

me the opportunity to dive into the field of meteors and the surroundings of Kiruna.
Without the early work of Asta, Gudmund Wannberg, Assar Westman and Ingemar
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and Šimek, M. (1998). Meteor phenomena and bodies. Space Science Reviews, 84:327–
471.

Close, S., Brown, P., Campbell-Brown, M., Oppenheim, M., and Colestock, P. (2007).
Meteor head echo radar data: Mass velocity selection effects. Icarus, 186:547–556.

Cox, A. N., editor (2000). Allen’s astrophysical quantities. AIP and Springer, 4 edition.

Danby, J. M. A. (1988). Fundamentals of celestial mechanics. Willmann-Bell, 2nd. rev. and
enlarged edition.

Dubyago, A. D. (1961). The determination of orbits. New York, Macmillan. Translated
from Russion by R. D. Burke.

Evans, J. V. (1965). Radio-echo studies of meteors at 68-centimeter wavelength. Journal
of Geophysical Research, 70:5395–5416.

Evans, J. V. (1966). Radar observations of meteor deceleration. Journal of Geophysical
Research, 71:171–188.

Galligan, D. P. and Baggaley, W. J. (2004). The orbital distribution of radar-detected
meteoroids of the solar system dust cloud. Monthly Notices of the Royal Astronomical
Society, 353:422–446.

Genge, M. J. (2008). Micrometeorites and their implications for meteors. Earth, Moon,
and Planets, 102:525–535.

Green, R. M. (1988). Spherical astronomy. Cambridge University Press, Great Britain.

Hawkes, R. L. (2002). Meteors in the Earth’s atmosphere, Chapter: Detection and analysis
procedures for visual, photographic and image intensified CCD meteor observations,
pages 97–122. Cambridge University Press, Cambridge, UK.

Hedin, A. E. (1991). Extension of the MSIS thermosphere model into the middle and
lower atmosphere. Journal of Geophysical Research, 96:1159–1172.

Herlofson, N. (1951). Plasma resonance in ionospheric irregularities. Arkiv för fysik,
3(15):247–297.

Hocking, W. K., Fuller, B., and Vandepeer, B. (2001). Real-time determination of meteor-
related parameters utilizing modern digital technology. Journal of Atmospheric and
Solar-Terrestrial Physics, 63:155–169.



38 REFERENCES

Jessberger, E. K. e. a. (2001). Interplanetary dust, Chapter: Properties of Interplanetary
Dust: Information from Collected Samples, pages 253–294. Astronomy and Astro-
physics Library. Springer-Verlag, Heidelberg, Germany.

Jones, J., Brown, P., Ellis, K. J., Webster, A. R., Campbell-Brown, M., Krzemenski, Z.,
and Weryk, R. J. (2005). The Canadian Meteor Orbit Radar: System overview and
preliminary results. Planetary and Space Science, 53:413–421.

Kero, J. (2008). High-resolution meteor exploration with tristatic radar methods. PhD thesis,
Swedish Institute of Space Physics, Kiruna, Sweden.

Kero, J., Szasz, C., Pellinen-Wannberg, A., Wannberg, G., Westman, A., and Meisel,
D. D. (2008a). Determination of meteoroid physical properties from tristatic radar
observations. Annales Geophysicae. Submitted.

Kero, J., Szasz, C., Wannberg, G., Pellinen-Wannberg, A., and Westman, A. (2008b). On
the meteoric head echo radar cross section angular dependence. Geophysical Research
Letters. doi:10.1029/2008GL033402.
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Öpik, E. J. (1958). Physics of meteor flight in the atmosphere. Number 6 in Interscience tracts
on physics and astronomy. Interscience Publishers, Inc.

Pellinen-Wannberg, A. and Wannberg, G. (1994). Meteor observations with the Eu-
ropean Incoherent Scatter UHF radar. Journal of Geophysical Research, 99(A6):11379–
11390.

Rietmeijer, F. J. M. (2002). The earliest chemical dust evolution in the solar nebula.
Chemie der Erde, 62:1–45.

Rogers, L. A., Hill, K. A., and Hawkes, R. L. (2005). Mass loss due to sputtering and
thermal processes in meteoroid ablation. Planetary and Space Science, 53:1341–1354.

Roy, A. E. (1988). Orbital motion. Adam Hilger, Bristol and Philadelphia, 3rd edition.

Seidelmann, P., editor (1992). Explanatory supplement to the astronomical almanac. Uni-
veristy Science Books, 20 Edgehill Rd; Mill Valley, CA 94941.

Singer, W., von Zahn, U., and Weiß, J. (2004). Diurnal and annual variations of meteor
rates at the Arctic Circle. Atmospheric Chemistry and Physics, 4:1355–1363.

Tielens, A. G. G. M., McKee, C. F., Seab, C. G., and Hollenbach, D. J. (1994). The physics
of grain-grain collisions and gas-grain sputtering in interstellar shocks. The Astrophys-
ical Journal, 431:321–340.

Webster, A. R., Brown, P. G., Jones, J., Ellis, K. J., and Campbell-Brown, M. (2004). Cana-
dian Meteor Orbit Radar (cmor). Atmospheric Chemistry and Physics, 4:679–684.



REFERENCES 39

Westman, A., Wannberg, G., and Pellinen-Wannberg, A. (2004). Meteor head echo alti-
tude distributions and the height cutoff effect studied with the EISCAT HPLA UHF
and VHF radars. Annales Geophysicae, 22:1575–1584.

Wilkins, G. and Springett, A., editors (1961, Fourth impression (with amendents) 1977).
Explanatory supplement to the astronomical ephemeris and the American ephemeris and nau-
tical almanac. Her Majesty’s Stationary Office, London. Issued by H.M. Nautical Al-
manac Office by Order of the Science Research Council.

Williams, I. P. (2002). Meteors in the Earth’s atmosphere, Chapter: The evolution of mete-
oroid streams, pages 13–32. Cambridge University Press, Cambridge, UK.

Zeilik, M. and Gregory, S. A. (1998). Introductory astronomy & astrophysics. Saunders
College Publishing, 4th edition.

Zhou, Q., Tepley, C. A., and Sulzer, M. P. (1995). Meteor observations by the Arecibo 430
MHz incoherent scatter radar - 1. Results from time-integrated observations. Journal
of Atmospheric and Terrestrial Physics, 57:421–431.





A P P E N D I X

A VARIABLE NAME KEY - ORBIT
CALCULATIONS

This is a translation key of variable names used in the meteoroid orbit calculations be-
tween Section 6 and the Matlab code KirunaAltAzr6.m. The variable names are in order
of appearance.

R⊕ = aE
ω⊕ = wRT
Λ = Lambda
Φ = Phi
φ = phi, delta1
H = hh
C = see
ρcv = rho3
rcv = rp
az = az
zd = zd
V∞ = gvee1
Veast = eastV
∆V = Delta V
Vg = gvee2, gvee
l# = lS
m# = mS
e#, e⊕ = ec
ω# = wS
JD = jD
t0 = to
E# = eS
r# = rS
v#x = xp
v#y = yp
v# = v0
lapex = lAP
ε = epsilon
alt = alt
θ1 = Theta2
cY = cY

δ = delta2
cX = cX
cZ = cZ
h = h
α = alpha2
∆α = Delta alpha
∆δ = Delta delta
α1 = alpha3
δ1 = delta3
h1 = hangle
cX1 = zCX
cY1 = zCY
cZ1 = zCZ
alt1 = alt3
zd1 = zD3
V2 = vg
Ψ = Psi
az2 = az4
zd2 = zD4
alt2 = alt4
cX2 = cX
cY2 = cY
cZ2 = cZ
h2 = h3
δ2 = delta
α2 = alpha
cX2 = cX
cY2 = cY
cZ2 = cZ
β = beta
λ = lambda

n = n
λ# = lambdas
dX1 = dX
dY1 = dY
dZ1 = dZ
γ = gamma
dQ = dQ
Vh = vee
N = nn
dX2 = cLX
dY2 = cLY
dZ2 = cLZ
β0 = beta0
λ0 = lambda0
cL = cI
sL = sI
I2 = pL
i = ii
cν = cV
sν = sV
a = aa
e = ecc
Q = q
q = qp
ν = nu
E = eee
∆t = Delta T, ttt
Ω = Omega0
ω = w
T = period
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