How to characterize an electrostatic analyzer

by simulations and experiments

OUTLINE

Introduction

- Principle of particle measurement
- Geometric factor

How to get G factor

- Simulations
- The simple way
- Optimization of parameter space coverage
- Experiments
- Aspects not considered in simulations

PRINCIPLE OF PARTICLE MEASUREMENT (1)

We want to know

- $f(x, v ; t)$: particle distribution function [\# m-6 s^{3}]
- not directly measurable

We can measure

- $j\left(x_{1}, x_{2}, x_{3}, E, \theta, \phi ; t\right)$: differential flux [\# $\mathrm{cm}^{-2} \mathrm{~s}^{-1} \mathrm{sr}^{-1}$ eV^{-1}]
- $f=m^{2} /\left(2^{*} E\right) * j$

PRINCIPLE OF PARTICLE MEASUREMENT (2)
j is measured by counting numbers

- $C(t)$: count rate of particles $\left[\mathrm{s}^{-1}\right]$ selected by analyzer and detected by detector

Therefore
$j(x, y, z ; E, \theta, \phi ; t)=C(x, y, z ; t) / \varepsilon / G\left(E_{A}, \theta_{A}, \phi_{A}\right)$

- ε : total detection efficiency [-]
- $G\left(E_{A}, \theta_{A}, \phi_{A}\right) \equiv d A * d \Omega * d E$
- Geometric factor [m² sr eV]
- Coverage of the particle selection region in coordinate, angular and energy spaces, at $x, y, z, E_{A}, \theta_{A}, \phi_{A}$
Calibration to establish $\varepsilon * G\left(E_{A}, \theta_{A}, \phi_{A}\right)$
(subscript A is for the energy and direction selected by the analyzer, a "setting")

CALIBRATION BY SIMULATIONS

THE SIMPLE WAY

Use a beam that is

- a pencil beam (δ function in area)
- parallel (δ function in direction)
- mono-energetic (δ function in energy) Continuous scans:
- over accepted area
- over acceptance solid angle
- over accepted energy range

Hit: in the G factor

Miss: not
x_{1} or \varnothing

- This is how simulations could be done in principle

THE SIMPLE WAY: INEFFICIENT IN PARAMETER SPACE

Unobvious instrument coverage in most dimensions

- Scans have to cover very large area, wide angular range
- Resolution needs be sufficient

Many steps in each dimension
5 dimensions

```
for }x\mathrm{ in range(0, 10, 0.1): # 100
    for y in range(0, 10, 0.1): # 100
        for elevation in range(0, 90, 1): # 90
            for azimuth in range(-90, 90, 1): # 180
            for E in range(4000, 5000, 10): # 100
                launch_particle(x, y, elevation, azimuth, E) # 1.62e10 particles in total
```

This is just for ONE setting of the instrument.

Smart optimization needed

OPTIMIZATION OF SCAN RANGES: REVERSE SIMULATION

The detector

- where spatial, angular and energy are constrained well
- Much smaller parameter space to start from

Reverse simulations with very high resolutions

- from detector to instrument entrance
- Get parameter space coverage at the entrance

Expand a little, as the parameter ranges for forward simulation from the entrance

REVERSED SIMULATION: FOR THE COVERAGE AT ENTRANCE

Ev. Marker cen=[-34.08, 21.12, -6.78] norm $=[0.80,0.58,-0.16]$ xz distribution $\mathrm{x}:[-30.05,-22.47], \mathrm{z}:[-8.72,-1.87]$

position coverage

energy coverage

FORWARD SIMULATION: PARALLEL WIDE BEAM

$$
\begin{gathered}
E=5 k e V \\
\theta=72.9^{\circ} \\
\phi=-10^{\circ}
\end{gathered}
$$

Ev. Marker cen $=[17.69,117.93,3.52]$, norm $=[-0.32,0.95,0.06] \mathrm{xy}$ distribution $\mathrm{x}:[15.37,18.26], \mathrm{y}:[116.81,118.10]$

Ev. Marker cen=[17.69, 117.93, 3.52], norm $=[-0.32,0.95,0.06] \mathrm{xz}$ distribution $\mathrm{x}:[15.37,18.26], \mathrm{z}:[3.14,9.26]$

Ev. Marker cen=[17.69, 117.93, 3.52], norm $=[-0.32,0.95,0.06]$, energy spectrum

Ev. Marker cen=[17.69, 117.93, 3.52], norm $=[-0.32,0.95,0.06]$ azi-ele distribution

position \& energy scan

GEOMETRIC FACTOR DERIVATION

- Rotation scan: repeat parallel wide beam from different directions within entrance coverage for directions for one
- $d \Omega$ can be obtained
- $G=d A * d \Omega * d E$

CALIBRATION BY EXPERIMENTS

MODEL \neq REALITY

Simulations

- Fixed analyzer voltage, varying particle energy
- Known beam properties
- Perfect detectors (counts = hits)

Experiments

- Fixed particle energy, varying analyzer voltage
- Unknown beam properties
- Position, spread, flux...
- Real detectors (counts < hits)

ENERGY DISTRIBUTION: WHAT IS COUNTED

Ev. Marker cen=[17.69, 117.93, 3.52], norm $=[-0.32,0.95,0.06]$, energy spectrum

Simulation

- Fixed E_{A}, varying particle energy
- Number of particles that are
- at energies $E_{m}(m=0, \pm 1, \pm 2 \ldots)$ and
- through analyzer energy E_{A}

Experiment

- Fixed particle energy, varying E_{A}
- Number of particles that are
- at energy E_{0} and
- through analyzer energies

$$
E_{A m}(m=0, \pm 1, \pm 2 \ldots)
$$

- Valid if $\left(E_{m}-E_{m-1}\right) \ll E_{A}$: calibration condition

WHERE IS THE BEAM: INVISIBLE BEAM

WHERE IS THE BEAM: OFF-CENTER APERTURE

[Stude, 2016]

- Off-centered instrument effective area: may move during rotation scan
- Use wide beam
- Translation scan before rotation scan, stay in the beam center

WHAT IS THE PARTICLE FLUX? BY MEASURING CURRENTS
 Q: FC calibrated?

1.1. Insert Faraday cup, measure current $\mathrm{I}_{\mathrm{F} 0}$
1.2. Remove Faraday cup, measure grid current $\mathrm{I}_{\mathrm{G} 0}$.

WHAT IS THE PARTICLE FLUX? BY MEASURING CURRENTS

1.1. Insert Faraday cup, measure current $I_{F 0}$ 1.2. Remove Faraday cup, measure grid current $\mathrm{I}_{\mathrm{G} 0}$.

2. Translation scan, find beam area A_{B}, monitor grid current $\mathrm{I}_{\mathrm{G}}(\mathrm{t})$

WHAT IS THE PARTICLE FLUX? BY MEASURING CURRENTS

1.1. Insert Faraday cup, measure current $I_{F 0}$ 1.2. Remove Faraday cup, measure grid current $\mathrm{I}_{\mathrm{G} 0}$.

2. Translation scan, find beam area A_{B}, monitor grid current $\mathrm{I}_{\mathrm{G}}(\mathrm{t})$
3. Rotation scan, monitor grid current $\mathrm{I}_{\mathrm{G}}(\mathrm{t})$

WHAT IS THE PARTICLE FLUX? BY MEASURING CURRENTS

$$
\begin{aligned}
& I_{F}(t)=I_{G}(t) / I_{G 0} * I_{F 0} \\
& j(t)=I_{F}(t) / A_{B} \\
& f_{p}(t)=j(t)(1-\zeta) / e
\end{aligned}
$$

ζ : block ratio of the grid
e : unit charge
$\max (C(t)) / f_{p}(t)=d A$ * ε

Geometric factor INCLUDING efficiency

SUMMARY

- Geometry factor is the coverage of the particle selection region in coordinate, angular and energy spaces, as function of analyzer settings, E_{A}, θ_{A}, ϕ_{A}
- Calibration for one setting means launching test particles filling the parameter space coverage, and observing what has gone through the analyzer
- Good simulations are hard, good experiments are harder.

