

How to characterize an electrostatic analyzer

by simulations and experiments

Xiao-Dong Wang, 2017-11-09, IRF Seminar

OUTLINE

Introduction

- Principle of particle measurement
- Geometric factor

How to get G factor

- Simulations
 - The simple way
 - Optimization of parameter space coverage
- Experiments
 - Aspects not considered in simulations

PRINCIPLE OF PARTICLE MEASUREMENT (1)

We want to know

- f(x, v; t): particle distribution
 function [# m⁻⁶ s³]
- not directly measurable

We can measure

j(*x*₁, *x*₂, *x*₃; *E*, *θ*, *φ*; *t*):
 differential flux [# cm⁻² s⁻¹ sr⁻¹ eV⁻¹]

•
$$f = m^2 / (2^*E) * j$$

PRINCIPLE OF PARTICLE MEASUREMENT (2)

j is measured by counting numbers

 C(t): count rate of particles [s⁻¹] selected by analyzer and detected by detector

Therefore

 $j(x, y, z; E, \theta, \phi; t) = C(x, y, z; t) / \varepsilon / G(E_A, \theta_A, \phi_A)$

- ε: total detection efficiency [-]
- $G(E_A, \ \theta_A, \ \phi_A) \equiv dA * d \Omega * dE$
 - Geometric factor [m² sr eV]
 - Coverage of the particle selection region in coordinate, angular and energy spaces, at *x*, *y*, *z*, *E*_A, θ_A , ϕ_A

Calibration to establish $\varepsilon * G(E_A, \theta_A, \phi_A)$

(subscript A is for the energy and direction selected by the analyzer, a "setting")

CALIBRATION BY SIMULATIONS

THE SIMPLE WAY

Use a beam that is

- a pencil beam (δ function in area)
- parallel (δ function in direction)
- mono-energetic (δ function in energy)
 Continuous scans:
- over accepted area
- over acceptance solid angle
- over accepted energy range

Hit: in the G factor Miss: not

 $x_1 \text{ or } \phi$

• This is how simulations could be done in principle

THE SIMPLE WAY: INEFFICIENT IN PARAMETER SPACE

Unobvious instrument coverage in most dimensions

- Scans have to cover very large area, wide angular range
- Resolution needs be sufficient

Many steps in each dimension

5 dimensions

```
for x in range(0, 10, 0.1): # 100
for y in range(0, 10, 0.1): # 100
for elevation in range(0, 90, 1): # 90
for azimuth in range(-90, 90, 1): # 180
for E in range(4000, 5000, 10): # 100
launch_particle(x, y, elevation, azimuth, E) # 1.62e10 particles in total
```

This is just for ONE setting of the instrument.

Smart optimization needed

OPTIMIZATION OF SCAN RANGES: REVERSE SIMULATION

The detector

- where spatial, angular and energy are constrained well
- Much smaller parameter space to start from

Reverse simulations with very high resolutions

- from detector to instrument entrance
- Get parameter space coverage at the entrance

Expand a little, as the parameter ranges for forward simulation from the entrance

REVERSED SIMULATION: FOR THE COVERAGE AT ENTRANCE

FORWARD SIMULATION: PARALLEL WIDE BEAM

Azimuth [deg]

position & energy scan

GEOMETRIC FACTOR DERIVATION

- Rotation scan: repeat parallel wide beam from different directions within entrance coverage for directions for one
- $d \Omega$ can be obtained
- $G = dA * d \Omega * dE$

CALIBRATION BY EXPERIMENTS

$\mathsf{MODEL} \neq \mathsf{REALITY}$

Simulations

- Fixed analyzer voltage, varying particle energy
- Known beam properties
- Perfect detectors (counts = hits)

Experiments

- Fixed particle energy, varying analyzer voltage
- Unknown beam properties
 - Position, spread, flux...
- Real detectors (counts < hits)

[Stude, 2016]

ENERGY DISTRIBUTION: WHAT IS COUNTED

Simulation

- Fixed E_A , varying particle energy
- Number of particles that are
 - at energies E_m (m = 0,±1, ±2...) and
 - through analyzer energy E_A

Experiment

- Fixed particle energy, varying E_A
- Number of particles that are
 - at energy E_0 and
 - through analyzer energies E_{Am} ($m = 0, \pm 1, \pm 2...$)
- Valid if $(E_m E_{m-1}) \ll E_A$: calibration condition

WHERE IS THE BEAM: OFF-CENTER APERTURE

 Off-centered instrument effective area: may move during rotation scan

Use wide beam

 Translation scan before rotation scan, stay in the beam center

WHAT IS THE PARTICLE FLUX? BY MEASURING CURRENTS Q: FC calibrated?

1.1. Insert Faraday cup, measure current I_{F0}

1.2. Remove Faraday cup, measure grid current I_{G0} .

WHAT IS THE PARTICLE FLUX? BY MEASURING CURRENTS

1.1. Insert Faraday cup, measure current I_{F0}

1.2. Remove Faraday cup, measure grid current I_{G0} .

2. Translation scan, find beam area A_B , monitor grid current $I_G(t)$

WHAT IS THE PARTICLE FLUX? BY MEASURING CURRENTS

1.1. Insert Faraday cup, measure current I_{F0}

1.2. Remove Faraday cup, measure grid current I_{G0}.

2. Translation scan, find beam area A_B , monitor grid current $I_G(t)$

3. Rotation scan, monitor grid current $I_G(t)$

WHAT IS THE PARTICLE FLUX? BY MEASURING CURRENTS

 $I_F(t) = I_G(t) / I_{G0} * I_{F0}$ $j(t) = I_F(t) / A_B$ $f_p(t) = j(t)(1 - \zeta) / e$

 $\boldsymbol{\xi}$: block ratio of the grid

e: unit charge

 $\max(C(t)) / f_p(t) = dA *$ ε

Geometric factor INCLUDING efficiency

SUMMARY

- Geometry factor is the coverage of the particle selection region in coordinate, angular and energy spaces, as function of analyzer settings, E_A , θ_A , ϕ_A
- Calibration for one setting means launching test particles filling the parameter space coverage, and observing what has gone through the analyzer
- Good simulations are hard, good experiments are harder.