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This document is the final report of a study “Spacecraft anomaly forecasting using local 

environment data” (WP 210) that is a part of a subcontract performed under the contract 

“Study of plasma and energetic electron environment and effects.” 

The Meteosat spacecraft have experienced several anomalies at geostationary orbit. The first 

Meteosat spacecraft had unexpected anomalies (Hoge and Leverington, 1979) and therefore 

Meteosat-2 was equipped with SEM-1, an environmental monitor for electrons below 30 keV. 

The detected anomalies did not correlate with the changes in the low energy plasma (Coates 

et al., 1991). Therefore on Meteosat-3 another environmental detector SEM-2 (López 

Honrubia and Hilgers, 1996) was included on the spacecraft measuring higher energies. 

Rodgers and others at Mullard Space Science Laboratory and ESTEC have analysed the 

Meteosat data set in several case studies (see, e.g., Rodgers, 1991). A more detailed 

background to these studies is given in Section 2.5. 

In this study the Meteosat-3 data set is used exclusively in order to analyse the effect of the 

local plasma environment on the spacecraft and the resulting anomalies. We have analysed 

the local environment data set and used it to predict the anomalies. We have also investigated 

the most important parameter determined from the local environment measurements on 

Meteosat-3 for prediction of the anomalies. 

<;I&!R9:S:89Z7&965W9\USL&

The local plasma at the geostationary orbit (GEO) affects spacecraft and can cause anomalies. 

Anomaly is here defined as when a spacecraft changes its behaviour in a way that it was not 

designed for and is not caused by an operational error. This can be anything from a bit flip to 

a total malfunction of the spacecraft. In the early days of space activities, some anomalies on 

geostationary spacecraft were linked to the photoemission of the sunlit surfaces. With this 

knowledge new design recommendations for spacecraft were made. In plasmas where the 

local Debye length is larger than the spacecraft dimensions (such as in GEO) the 

recommendations are proper grounding of the satellite and use of conductive surface 

materials. These recommendations can minimise or prevent accumulation of charges that can 

generate a potential difference between the sunlit and the shaded side of the spacecraft (Frezet 

et al., 1989).

The geostationary orbit passes through the outer radiation belts with trapped electrons in the 

energy range 1 to 10 MeV. The electrons do not usually interact directly with electronic 

components because a modest amount of shielding (approximately 2 mm Al) is enough to 

stop the majority of them, although their accumulated dose can eventually cause significant 

component degradation. Electrons above 30 keV cause a large number of secondary particles, 

which in their turn can charge parts inside the spacecraft and cause deep-dielectric charging. 

Frederickson (1980) found that bulk charge in dielectrics required at least a week to decay 

and possibly much longer. Hence the effect of many bursts of energetic electrons can add up 

and cause problems on the spacecraft. 
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The time scale of charging depends on the capacitance of the surface as well as the magnitude 

of the charging current (Rodgers, 1991). In geostationary orbit, time scales for the charging of 

surfaces are in the order of seconds. The differential charging of the largest surfaces relative 

to each other may take from seconds to hours. Since periods of disturbed plasma likely to 

cause intense charging usually have time scales of minutes, equilibrium is not always reached. 

During eclipses, when of course photoelectron emission can not occur, the SEM-1 on 

Meteosat-2 frequently observed differential charging which caused potential differences of 

around -600 V in one hour. They disappeared minutes after the eclipse had ended. In GEO the 

shadowing of different surfaces has a strong influence on the spacecraft potential. 

The accumulation of charges on a spacecraft depends on the charge transport (currents) to and 

from a surface (including charge transport in the structure). Low energy particles from the 

plasma are stopped on the surface (photoemission, ionospheric plasma), while high-energy 

particles penetrate the surface and can create secondary particles that can deposit charges 

somewhere else. Internal charging is caused by high-energy particles penetrating the 

spacecraft and depositing charges inside the spacecraft. Dielectric charging occurs when a 

potential has been built up in a dielectric material. Surface charging occurs on the surface of 

the spacecraft and interacts with the surrounding plasma. If one wants to monitor the low 

energy plasma surrounding the spacecraft these measurements will be affected by surface 

charging that can lead to either shielding or acceleration of low-energy charged particles. 

Large potentials can be generated by the Y x M force, depending, e.g., on the spacecraft size.

Other sources are currents to and from the spacecraft such as photoelectron emission, auroral 

electron beams, and hot plasma injections during magnetic storms or auroral substorms. 

Charges do mainly accumulate at sharp edges. The amount of charging depends on the 

surface properties. 

The accumulation of charges can reach a level such that electrical breakdown and powerful 

discharges occur. This can be between two points on the spacecraft or between the spacecraft 

and space. At a threshold, where the discharges occur, charges will move between the two 

points giving rise to a current, followed by an electromagnetic disturbance. This can cause an 

anomaly or damage the spacecraft. Light flashes, such as arcs on solar arrays (between 

interconnections and space) is a commonly observed discharge phenomena. In the Meteosat-1 

ground tests small discharges on the spacecraft surface were observed as frequently as one 

discharge per second (Hoge, 1980). One problem with the discharges is that they can drain 

current from the spacecraft system and cause current spikes on the bus. The discharges do not 

only damage the electronics in different ways but they also damage parts (sputtering) and 

change the material properties. For dielectric charging the discharges can lead to changes of 

the dielectric properties. Discharges can lead to degradation, loss of solar strings, loss of 

electronic components and changed thermal properties. Discharges can cease after a period of 

time in space because of the changes they cause to the material. 

Depending on energy and material properties, the radiation affects the material in different 

ways. Radiation can move atoms out of their lattice position and change the material 

properties. Radiation will mainly cause ageing of the material, change thermal and resistivity 

properties and cause darkening of glass etc. The effect will decrease the mission lifetime 

depending on the total dose to which the spacecraft is exposed. This effect is a long time 

effect. The material ageing continues until the end of the mission or until the part fails due to 

the high total dose of radiation. These environmental effects on the material have to be taken 

into account when designing the spacecraft. 
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High-energy particles penetrating material, such as silica, can cause charge production and 

accumulation in the material. This accumulation of charges can be large enough to cause 

malfunction of electronics. Single event effects (SEE) are described differently such as; bit 

flip, single event upset (SEU), latch up or single event burnout (SEB). This malfunction only 

needs one high-energy particle (usually MeV or higher). Protection from SEE by shielding is 

not trivial. The highest energy particles, those that can penetrate the shielding, can cause more 

secondary particles with a thicker shielding. If the flux of the energetic particles is constant 

during a mission the probability of a SEE is also constant. The design of the spacecraft has to 

be such that if a SEE occurs, the mission will not be at any risk. This could be from selection 

of components, redundant electronics or protective computer program routines. 

Problems related to the local plasma environment have received special attention with the 

failure of the ANIK 1E (Baker et al., 1996) and the internal charging of Telstar 402 

(Lanzerotti et al., 1996). The sister spacecraft Telstar 401 was lost during the large magnetic 

storm in January 1997 (Anselmo, 1997). 
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geocentric distance of 6.6 RE with low inclination; they are often referred to as 

geosynchronous orbits although the concept of geosynchronism is a wider concept. The 

plasma environment is controlled by the magnetic field configuration determined by the 

internal dipole field and external currents in the magnetosphere and the spacecraft move 

through variable plasma environments. The temporal variation of the solar wind influences 

the magnetosphere and the plasma characteristics at GEO. During magnetic storms the 

trapped particle belts inside GEO can grow in size and intensity, and more dense populations 

of particles (high energies) connected to the radiation belts will reach beyond the GEO and 

modify the spacecraft environment. The increase of particles in the radiation belts and the ring 

current comes mainly from the magnetosphere tail. Near and inside the GEO orbit electrons 

from the tail move eastward on trapped paths around the Earth. High-energy protons move in 

the opposite direction around the Earth. Particles that become trapped in the Earth's nearly 

dipolar magnetic field form a net westward ring current. 

The main contributions to the ring current are particles in the keV energy range. The radiation 

belts consist mainly of particles with higher energies. The particles in the inner radiation belt 

are in stable trapped orbits, which implies that there is no obvious entry or sink for the inner 

radiation belt. The source is usually assumed to be galactic or anomalous cosmic rays (GCR 

or ACR). Since the loss rate is low the number density can grow to significant levels. As 

ACRs typically are only singly- or doubly-ionised they can reach lower parts of the radiation 

belt and play a significant role there compared to the more numerous GCR (Klecker, 1996). 

The decay of the radiation belts is slow and mainly caused by pitch angle diffusion and charge 

exchange with neutral particles. 
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During quiet times the geostationary orbit is always inside the magnetopause, but during 

severe magnetic storms the dayside magnetopause may move inside GEO. The plasma 

environment a spacecraft experiences depends on the local time. Because the majority of 

injections occur from the tail, the morning hours usually have bursty flows of electrons. At 

other local times the injected particles have been smeared out to lower concentration due to 

the adiabatic motion, energy filter effects and particle losses at the dayside magnetopause. 

High-energy electrons have the highest density in the noon sector due to the adiabatic motion 

and the compressed dayside magnetic fields. The typical plasma sheet electron temperature at 

GEO distance is 1 keV but during high geomagnetic activity the temperature can increase to 

10 keV. 

The angle between the Earth's magnetic dipole axis and the rotation axis is !11°. The 

geostationary orbit is in the plane of the Earth's rotation. Since the Earth is orbiting the Sun 

and the Earth's rotation axis is tilted with respect to the ecliptic plane, the geostationary orbit 

plane includes the Earth-Sun axis twice a year, during the equinoxes. The rest of the year the 

orbit is tilted compared to the Sun-Earth line. The solar activity follows an 11-year cycle. A 

27-day periodicity in magnetic storms originates from the solar rotation. The 27-day rotation 

can clearly be seen in the high-speed solar wind streamers during the declining phase of the 

solar cycle. 

The sun is more active during solar maximum. The last solar maximum occurred in July 

1989. A coronal mass ejection (CME) which reaches the Earth is often linked with strong 

magnetic storms and great auroras. The solar proton events are associated with these CME. 

During solar minimum more cosmic rays can penetrate into the solar system and reach the 

Earth's inner magnetosphere. At maximum the solar magnetic field can shield the inner solar 

system from the lower end of the high-energy galactic cosmic rays. 
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The first Meteosat satellite, Meteosat-1, was launched in November 1977. The satellite was a 

spin-stabilised meteorological satellite with the main payload consisting of a scanning 

radiometer. The satellite recorded several anomalies. Since Meteosat-2 was already planned, a 

first investigation of the effects was made after only one year (Hoge and Leverington, 1979) 

to give guidelines for Meteosat-2. Clear correlation between anomalies and the spring 

equinox and a smaller correlation with the autumn equinox were seen for four satellites; 

Skynet, Meteosat-1, Symphonies-A and B. Correlation with local time, solar direction and 

eclipses could not be established. A clear correlation between anomalies on Meteosat-1 and 

the geomagnetic index two days before the detected anomaly was seen (the two day delay was 

also indicated in the Skynet data). A ground test of the engineering model was set up for 

investigation of the space environment effects on Meteosat-1. On Meteosat-1 about 80% of 

the outer surface was not conductive (e.g. solar cell cover glass, second surface mirrors and 

black paint) and large metallic surfaces of the thermal shields were not grounded, because no 

cost-effective solution existed at the time of construction. The grounding system on Meteosat-

1 was a multi-point grounding system. A current injection test did not lead to any failures 

during the five weeks of ground testing. Thermal shield test of irradiation was performed but 

the discharges were smaller than expected and seemed to have no impact on the satellite. The 

result from an electron irradiation test (Hoge and Leverington, 1979; Hoge, 1980 and Hoge, 

1982) showed that virtually all isolated surfaces on Meteosat-1 were subject to arc discharges 

every second or so but the energy was too low to cause any damage. The test was set up to 

produce the same conditions as for a substorm. 

From the Meteosat-1 spacecraft charging investigation the recommendation for the design of 

Meteosat-2 was to ground the shield, improve the critical interfaces and incorporate charging 

monitors. The charging monitors on Meteosat-2 consist of an electron analyser, SSJ3, built at 

Emmanual College, Boston, USA and an electrostatic-discharge monitor EEM-1 built at 

ESA/ESTEC. The SSJ3 had an energy range of 50 eV-20 keV in a low and a high energy 

channel. The Mullard Space Science Laboratory processed the data. 

The Meteosat-2 with the improved design was launched in June 1981. Meteosat-2 also 

encountered anomalous status changes (Hoge, 1982). During the first year a good correlation 

of Meteosat-2 flux measurements and the Marecs-A satellite anomalies was observed (Hoge, 

1982). Most of the Marecs-A anomalies occurred when the spacecraft passed through the 

plasma sheet. The interest of looking at more energetic radiation was raised. From the 

Meteosat-2 satellite the rapid degradation of the solar array indicated the existence of high-

energy particles but it did not correlate with the anomalies (Hoge, 1982). Coates et al. (1991)

#$%&'(&)*+,-#$)#'.)/(*0#)-1)*2-,*+'(#)10-,)3($(-#*$45)*2&)1-%2&)$6*$)$6()*2-,*+'(#)&'&)2-$)
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Hoge (1982) concluded that the improvement of the design on Meteosat-2 was effective 

although the monitor data did not agree with the hypothesis for the charging mechanism 

leading to these modifications. Other types of environmental effects or on-board generated 

interference may have been the cause of the remaining Meteosat-2 “arcing” anomalies. A 

spectrum of monitors for future launches was recommended. 
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For Meteosat-3 a new environmental monitoring instrument SEM-2 was used to measure 

higher energies. The SEM-2 was built at the Mullard Space Science Laboratory, UK, under 

contract to ESA/ESTEC. 

An assessment study (Frezet et al., 1989) was made on GEO satellites, one of which was 

Meteosat-2. The NASCAP and MATCHG codes were used to investigate electrostatic 

charging, especially for the radiometer cavity on Meteosat-2. To investigate seasonal 

dependence the code was run for different solar aspect angles. Less charging was found at 

solstice conditions than at equinoxes because of the larger sunlit area. The study 

recommended avoiding floating metalisation and high-resistivity material. The differential 

charging was reduced considerably when all conductors were grounded. Further 

improvements were seen when insulation black paint was made conductive and the Teflon 

was replaced by the lower-resistivity Kapton. With this the charging of the cavity was almost 

removed. In the result of the test a seasonal dependence was observed but a good correlation 

between severe plasma events and the observed Meteosat anomalies was lacking. This 

indicated that at least part of the problem was caused by “deep-dielectric charging” induced 

by high-energy electrons. 

I;I&,S7S5L97DN&58]U7&96T&5RS897U569\&RS8U5T&

Meteosat-3 was launched on 15 June 1988, to become one of ESA’s geostationary satellites in 

the meteorological satellite series. Eumetsat operated the satellite. During the lifetime of 

Meteosat-3 the satellite was moved several times (see Table 1). 

"9]\S&<;&?#+#-&0+;@(/-&%+%-*&&
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Launch 15 June 1988 June 1989 0°E 

June 1989 January 1990 50°W 

January 1990 April 1990 0°E 

April 1990 November 1990 5°W 

July 1991 50°W 

late 1992 75°W 

April 1993 72.8°W 

February 1995 November 1995 70°W, inclined 

!"#$%&'(()
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In May 1995 Eumetsat decided that it did not need the satellite back in position so it was kept 

in reserve around 70°W before final burn. Meteosat-3 was put into junk orbit on 21 

November 1995. 

The anomaly set covers the full time period, i.e. from 21 June 1988 to 20 October 1995. The 

environmental monitor SEM-2 operated during the same time period except for a few months 

(see Section 2.4). 

I;N&"[RSL&5Z&965W9\USL&56&,S7S5L97DN&

Meteosat-3 had many different types of anomalies. In Table 2 the anomalies are presented in 

18 different categories. The most common anomaly is on the radiometer, 70% of all 

anomalies. The radiometer is placed in the central part of the satellite. The total number of 

anomalies during the operational lifetime of the satellite was 724. The anomalies are well 

spread over the full orbit coverage as shown in Figure 1. 

"9]\S&I;&A-$#&(-.(?#+#-&0+;@(0*-B0C%#&&
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1 Radiometer stops 295 

2 Radiometer position jump 84 

3 Radiometer position jump and stop 127 

4 Other radiometer anomalies 3 

5 Battery charger 1 anomaly 7 

6 Battery charger 2 anomaly 49 

7 Battery charger 1 and/or 2 off 14 

8 Battery charger rate anomaly 4 

9 Digital multiplexer 1 off / 2 on 8 

10 Corrupted/lost image lines 67 

11 Command decoder anomaly 3 

12 Temperature reading anomaly 14 

13 SIC anomaly 29 

14 EDA bias jump, SIC lid jump, rad gain 5 

15 VIS 2 gain jump 2 

16 Regulator loop voltage anomaly 2 

17 Spurious memory reconfiguration 2 

18 Other anomalies 9 
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The space environment monitor on Meteosat-3, SEM 2, covers the energy range 42.9-300 

keV (Table 3) with a time resolution 8-10 minutes (Rodgers, 1991). The SEM-2 has low mass 

(2.5 kg), power (1.8 W) and telemetry rate (1.9 bits/s), which meant that the instrument did 

not have any significant impact on the main function of the spacecraft. The energy range was 

selected to look for deep-dielectric charging effects. It was based on an array of five surface 

barrier detector-collimator systems and was built by the Los Alamos National Laboratory and 

recalibrated by Mullard Space Science Laboratory. The detectors were arranged in a fan with 

each set at a different angle to the spacecraft spin axis to give five polar angle bins. The field 

of view of each detector was 5 degrees. Azimuth information was obtained by the spacecraft 

motion. The spin axis was aligned with the Earth's north-south axis. It is a solid-state detector 

that uses the stop length to estimate the energy. The highest energy bin includes all high-

energy particles, as well as those that do not stop in the detector (energies above 300 keV). 

"9]\S&N;&D'#(#*#>H3(E%*&(-.(!:?;9&
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1 201.8 keV 300 keV 

2 134.9 keV 201.8 keV 

3 90.7 keV 134.9 keV 

4 59.4 keV 90.7 keV 

5 42.9 keV 59.4 keV 



1#

An anisotropy index was derived from a two-dimensional array of fluxes at each polar and 

azimuth angle range, summed over all energy bins. This index was calculated by fitting 

spherical harmonics to the data (Rodgers, 1991 and references therein). Zero second-order 

anisotropy indexes correspond to an isotropic distribution. Negative index corresponds to an 

equatorial enhanced or “pancake” distribution that is frequently seen near local midnight 

where most electrons in this energy range have come from the tail. The axis of symmetry of 

the distribution is found in the same fitting process and is expressed in terms of its polar 

angle, ", and azimuth angles, #. Since the electrons are theoretically organised by the 

magnetic field, the axis of symmetry is an indicator of the magnetic field direction, although 

the sign and strength of the magnetic field is still unknown. 

The data files available for this study were stored in two data sets with the resolution 8-10 

min and 30 min respectively. Only the 30-minute resolution data set was used. The SEM-2 

data files contain: flux (summed over # and ") as function of energy, flux (summed over 

energy and #) as function of ", flux (summed over energy and ") as function of #, flux 

(summed over energy) as function of # and ", total flux (summed over energy), spectral index 

($), second-order anisotropy index %, and the polar (") and azimuth (#) angles defining the 

axis of symmetry, Kp (the planetary magnetosphere activity index) and the status of the on-

board memory SEU monitor. 

At the beginning of the mission there are more sporadic electron fluxes (solar maximum, 

while at the end (solar minimum) there are more regular changes due to the 27-day rotation of 

the sun (Figure 2). There is a variation between the daily average fluxes but no clear changes 

of the mean flux between solar minimum and solar maximum. The variation during one day is 

much larger than variation from day to day (Figure 3). 
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A number of investigations have used the Meteosat-3 (also called Meteosat P2) environment 

data set. Here follows a short description of some of them and their conclusions. 

Rodgers (1991) studied 166 anomalies from the radiometer together with primarily the low-

resolution data from SEM-2. A clear correlation was seen between some of the anomalies and 

the electron flux. A statistical study showed that for a typical anomaly the flux levels had 

been built up during the preceding 80 hours. Anomalies correlated with the highest fluxes 

occur mainly at 3-9 local time (LT). Anomalies correlating with low fluxes and longer build 

up times occur at 15-24 LT. Both seem to be more correlated with the high energy range on 
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SEM-2 and indicate that deep-dielectric charging is the most likely cause. Different energy 

ranges and their relative importance were compared using a time window around the anomaly 

and an average level (not time dependent). No correlation was found with incident angle for 

low-resolution data but for high resolution some dependency of theta was discovered. Earlier 

studies showed that anomalies have a strong seasonal dependence. This suggested that eclipse 

periods are important. The equinox coincides with the sun shining directly into the radiometer 

cavity, and this should reduce the surface charging effect but would not effect the deep-

dielectric charging effect. Rodgers (1991) concluded that the anomalies might have different 

causes but are probably due to deep-dielectric charging. The morning anomalies seemed to be 

triggered by a high flux of particles while evening anomalies had a long accumulation phase, 

over 8 days without a peak in the fluxes. 

Rodgers et al. (1999) continued the earlier study of Meteosat P2 anomalies now with the full 

seven-year anomaly data set (total 725 anomalies) together with the SEM-2 data. The detailed 

investigation was only on the radiometer anomalies (486 anomalies). They found that the 

highest energy channel was correlated with anomalies with high fluxes at the time of the 

anomaly. The 5-9 LT anomalies are mostly correlated with the high-energy channel. These 

were again suggested to result from deep-dielectric charging, and 16 of 121 anomalies in 5-9 

LT occurred in the same 3-hour bin as the previous anomaly. The other, especially 17-21 LT, 

anomalies occurred after long build-up times and with relatively low fluxes at the time of the 

anomaly. 

López Honrubia and Hilgers (1997) investigated the application of pattern classification 

techniques to anomaly data analysis. They used 40 anomalies over 5 years from Meteosat-3, 

4, and 5 (also known as Meteosat P2, launched 1988, and Meteosat Operational Satellites 

MOP-1, mid 1989 and MOP-2, February 1994) together with high energy (>2 MeV) electron 

measurements from the US series of Geostationary Operational Environmental Satellites 

(GOES). The data set was divided into two classes “anomaly” and “non-anomaly”. The 

analysis was made with a Learning Vector Quantization (LVQ) network. The data set 

contained 2000 input vectors, 40 of which were associated with anomaly days. The training of 

the network took into account that there are few anomalies compared with non-anomalies. 

The input data consisted of an N-day window with N-days of the mean daily flux; the window 

did not use information from the same day as the anomaly to make the analysis to be a 

prediction. The output was 1 if there was an anomaly the following day, -1 if there was an 

anomaly within the window N before or after and otherwise 0 (the cases with -1 were not 

analysed). Although limited by the small amount of anomaly data the technique allowed to 

give evidence of correlation of this type of anomaly with MeV data measured by the GOES 

spacecraft and of time dependent effects. 

Grystad (1997) applied similar technique as López Honrubia and Hilgers (1997) to analyse P2 

anomaly and environment data. Both a Bayesian linear classifier and an LVQ were used on 

the Meteosat -3 anomaly set and on the on-board SEM-2 instrument. The highest energy 

channels showed slightly different characteristics with a maximum at 4 days. The main 

conclusions, although still preliminary, were that the lower energy range correlates when only 

average flux over the latest day is considered, while for higher energies the best window 

length is longer, using both network methods. 
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In Figure 4 all anomalies from Meteosat-3 are presented as number of anomalies vs. the local 

time. It can be seen that more anomalies occur in the late evening/early morning sector (00-09 

LT) than during the rest of the day. This has also been seen in earlier studies (Wilkinson, 

1994; Vampola, 1994 and Wrenn and Sims, 1993). The increase of anomalies is usually 

attributed to the more frequent injection and drift of electrons into this sector. 

(UX&?;&?#+#-&0+;@(0*-B0C%#&(J&G(+'#(C-10C(+%B#(0*$(B-*+'4(>#&/#1+%J#C3G&

The radiometer anomalies have a peak in the midnight - morning sector (Figure 5). The 

battery charger anomalies are clearly correlated with equinox times. An interesting 

observation is that almost all battery anomalies occur when the z-coordinate is positive. The 

image line anomalies occur late in the mission and could be due to ageing or cosmic rays. The 

SIC have a tendency to peak at noon and could be a charge accumulation effect. The rest of 

the anomalies are evenly spread over the year and local times. Again, as for the battery 

charger anomaly, these anomalies seem to be more frequent at positive z-axis. The effect of 

the special conditions during equinox is clear on most types of the anomalies. 
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The solar cycle dependence is difficult to analyse because the operational period of the 

satellite covers less than one solar cycle. More anomalies occur at the end of the mission. 

The mission started during solar maximum (1989) and continued into solar minimum. If the 

effect is mainly due to coronal mass ejections (CME), the number of anomalies should be 

highest in the beginning of the mission (closer to solar maximum). If the anomalies are 

mainly affected by radiation it could be either solar proton events (solar maximum) or GCR 

and ACR, in which case the satellite should be affected mainly at solar minimum. The ageing 

of the spacecraft should in most cases increase the occurrence of anomalies with time, but for 

some cases the ageing can cause anomalies to disappear. In this study we can not separate the 

ageing effect from the solar cycle effect. 
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We selected an integration time of two hours. For each energy bin the average flux was 

calculated. In addition, for each interval the maximum and minimum values were saved. A 

fourth value was calculated for the interval, a “running mean” to represent long time effects. 

This “running mean” value was selected to be an average value of the previous 72 hours. This 

length of the time window was selected because it is longer than a day (to average out daily 

variations) and less than the effects of a magnetospheric storm (see Section 1.3). 

A data file consisting of a time series of average fluxes from all five energies with a 

resolution of two hours (represented as rows in the data files) was set up. Also, as discussed 

above, the maximum and minimum value during the time interval and the running mean value 

were added for each energy bin. This led to twenty values (representing the columns in the 

data file). In addition four more values were added until the data file consisted of 24 columns. 

The added values were the spectral index, anisotropy index, theta and phi (see Section 2.4 for 

a description). This data set is referred to as “_all” throughout the report. 

Two other data files were created, consisting of information from only three energy bins (four 

x three = twelve columns). They will be referred to as “_high” for the file containing 

information from energy bin 1, 2 and 3 (the highest energies) and “_low” for the energies 3, 4, 

and 5 (the lowest energies). (Note: Tests have also been made using the two lowest and the 

two highest energy levels. These tests gave the same result as using 3 levels. 

During the lifetime of Meteosat-3 there were six periods, one month or longer, when SEM-2 

was not operated, Figure 3. As a result the data set had to be treated as seven separate time 

series. A few small gaps (4 hours or less) were detected and replaced with a linear 

interpolation from the points surrounding the data gap. 

“_all” is a data set with 27 dimensions. Principal component analysis (PCA) can be used to 

transform a large-dimensional data set to three coordinates represented as the coordinates with 

the largest variance in the data set (see Appendix). To get the eigenvalues of the PCA the 

second period of continuous measurements was selected. These eigenvalues were then used 

on all seven-time periods; i.e. the coordinate transformation is the same for all time periods. 

The calculated eigenvalues (Figure 7) can be seen as the constants of a linear transformation 

from many dimensions to three. In Figure 7 the variance is largest in PCA1, representing the 

instantaneous particle flux. The second largest, PCA2, is the long time fluxes, and the third, 

PCA3, the spectral-slope index. Figure 7 shows these values. 

In Figure 8 the PCA1 is plotted together with anomalies. In PCA1 periods of smooth data can 

be seen (e.g., day 25). Sometimes the time series are interrupted by a periodicity of 12 points 

(one day) which can be a signature of an injection into GEO (e.g., day 145). By eye it seems 

that an anomaly is often preceded by these interruptions one to two days before. At other 

times the time series is fairly variable. At these periods the time series rise in value and 

frequently a number of anomalies are detected afterward (e.g., day 82). 
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The PCA analysis is made separately for the three data sets (_all, _high and _low). The 

second continuous time period is used to calculate the PCA and the calculated eigenvalues are 

used on all seven time periods. 

?;I&#LU6X&7KS&7UWS&KUL758[&96T&T[69WU:L&

The goal of this study is to find a possible way of predicting anomalies from the local 

measurements. The local measurements have been transformed into three values representing 

PCA1, 2, and 3. A data set with a time window preceding the time of prediction of an 

anomaly (1) or non-anomaly (0) was created. The time window was constructed using only 

every 12th point from the original data, i.e., using the measurement at the time of prediction 

together with data 24 and 48 hours before the time of interest, thus making the time window 

width 2 days. This leads to a data set consisting of 3 x 3 columns where the PCAs are shifted 

0, 12 and 24 points with respect to each other. The example described above is referred to as 

pa3. Other combinations of PCA are described in Table 4. 

As discussed in Section 4.1 the dynamics in PCA1 reveal a lot of information. Therefore a 

frequency analysis was performed. In order only to use data before the time of interest, a 

frequency analysis has to be done for each two-hour interval. The frequency analysis is 

performed in a window where the last point in the window represents the point where the 

prediction is made. For each point (time step) the window has to be shifted one step and a 

new analysis be made. Previous studies indicate that the time window should be 10 days or 

less. The window for the frequency analysis was therefore selected to be 128 points or less. 

One can use Fourier analysis to calculate the frequency but in this study we used a wavelet 

transformation (Kumar and Foufoula-Georgiou, 1997). 

The wavelet analysis was performed on the strongest component, PCA1, after the data was 

low-pass filtered. The wavelet transformation was a 15 point. The tested time windows are 

32, 64 and 128 points and throughout the report they will be referred to as wa32, wa64 and

!"#$%&' ()*+),-./)012' 34)' 5()67)8,1' "8"01*.*' !"*' 9":)' 5;(' "00' -4())' *)-*' <.2)2' 5;(' =>"00?&'

=>4.@4?'"8:'=>0;!?A'*)+"("-)012
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The prediction (the output) of anomaly or non-anomaly can be represented differently. For 

instance only one type of anomaly could be used in training and testing a network, and/or the 

prediction resolution could vary. A one point (2 hour) prediction resolution means that if an 

anomaly occurs within 2 hours of the prediction, the output should be 1. If the prediction 

resolution is set to one day, 12 points (i.e., rows in the data file with 2-hour resolution) will 

indicate 1 if an anomaly occurs. Due to this is a desired output 1 referred in this report as a 
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warning, since one anomaly causes several output rows with 1’s. As a further result, if two 

anomalies are closer than 12 points they will cause fewer than the expected 24 warnings. 

Depending on the result of the analysis one can change the criteria of the output data. 

"9]\S&?&TCC(+'#($%..#>#*+(1-BE%*0+%-*&(.->(+'#(2AT(.%C#(,&#$(%*(+'%&(>#/->+G(D'#(/0@($#&1>%E#$(
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8SZ;&69WS& R5U67&

8SL5\J7U56&

6JW]S8& 5Z&

)2+&JLST&

7579\& 6JW]S8&

5Z&:5\JW6L&

\S6X7K& 5Z&

7UWS& ^U6T5^&

BKC&

R9E& 12 3  

bin 0, 1, 2, 3, 4 

15 24 original electron flux 

from the 5 used bins 

RE<& 12 3 

bin 0, 1 

6 24 original electron flux 

from the 2 used bins 

REI& 12 3 

bin3, 4 

6 24 original electron flux 

from the 2 used bins 

R9I& 3 3 9 24 

R9N& 12 3 9 48 described in text 

R9?& 3+12 6 18 48 points at 0, 4, 7, 10, 

12, and 48  

R9Q& 3 4 12 20 

R9@& 6 6 18 54 

R9>& 12 6 18 144 

?;N&-SJ89\&6S7^58`&969\[LUL&

A program was written to combine the seven different time periods into one large data file. 

The treatment of the data files as input to the different neural networks is described in 

Appendix 1. The data file consists of one of the files from Table 4 containing the PCA 

information, the frequency analysis and the desired output. The final file contains about 

27.600 2-hour intervals, i.e. about 2.300 days or 6.3 years of data. The number of anomalies is 

about 522. If the data file is built to predict an anomaly within 24 hours, the data file (27.600 

rows) will contain 20% of lines with warnings. 

The first test of the data using a neural network with a back-propagation learning algorithm is 

displayed in Table 5. PE indicates the numbers of layers and number of neurons in them. The 

prediction resolution is noted "p" (1p means prediction within 2 hours). In Table 5 the PCA 

combination "pa3" is combined with a frequency analysis (wa*) which gives the size of the 

net 24+1 (24 inputs and one output). The output of the trained net is a decimal number and a 

threshold value has to be chosen to get the best result. In Table 5 the success of the different 

nets are calculated from a threshold of 0.5. In Table 6 a case from Table 5, row number 3 has 

been further studied with different net sizes. When the threshold was set so that about 85-90 

% of the non-anomalies were predicted 40-45 % of the anomalies were correctly predicted, 

more or less independent of what we did with the data. 
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From the cases in Table 5 the prediction success of anomalies at different local times are 

analysed. When this type of check is made, a warning is counted in the local time sector 

where the associated anomaly occurred. In this way a prediction resolution of 12 points will 

not lead to an evenly spread number of warnings in each local time sector. 
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(U\S&

7[RS&

"89U6U6X&LS7& "89U6U6X&LS7& "SL7&LS7& "SL7&LS7&

).& R& T979&

:5W]U697U56&

965W9\[&

BbC&

656D965W9\[&

BbC&

965W9\[&

BbC&

656D965W9\[&

BbC&

10 12 wa 64
0

38 88 37 88 

10+4 12 wa 64
0

38 89 36 89 

10+4 1 wa 64
0

45 93 44 86 

10+4 1 wa 32
0

45 91 49 88 

10+4 1 wa 128
0

47 89 44 86 

10+4 1 wa 64
0,1

53 88 39 84 

10+4 1 wa 32
2

44 88 44 88 

10+4 1 wa 32
3

42 89 49 87 

0) Using _all
1) Selected number of anomalies (only type 1, 2, 3, 6, 7, 10, and 13)
2) Using _high
3) Using _low

"9]\S& @;&W>-B( D0EC#( R( 10&#( >-"( @( %*( B->#( $#+0%C( "%+'( $%..#>#*+( *,BE#>&( -.( *#,>-*&( 0*$(

C03#>&(L2:MG(L/04(@("0KN4(8/-%*+M

"89U6& "89U6& "SL7& "SL7&

).& 965W9\[& 656D965W9\[& 965W9\[& 656D965W9\[&

@& 46 91 47 83 

N& 47 90 48 82 

NcN& 47 90 41 87 

@cN& 48 89 49 80 

I?ca& 43 84 

aE& 40 88 

In Table 7 the prediction rates for local time sectors from 2-24 hour local time are given. 

There are more anomalies in the morning sector (Figure 4). The success rate (percentage) is 

higher in the same sector. 
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In Section 4.1 the information from the SEM-2 instrument has been pre-processed so less 

input data are used. The pre-processing of the data is done in such way that the largest 

variance of SEM-2 measurements is used without introducing the information from the 

anomalies. The many-dimensional problem is transformed down to three dimensions with the 

PCA analysis. The data files are then a combination of the PCA results and the dynamics of 

the largest coordinate from the PCA analysis through a frequency analysis (wavelet 

transformation). No information of time (i.e. year, month or time of day) is used in the input 

data. The output, i.e. warning or not, can be selected from different criteria. With this we can 

predict about 50% of the anomalies. Different network sizes and combinations of the data are 

made with only small changes of the result. 

"9]\S&>;&!,11#&&(>0+#($#/#*$%*H(-*(/-&%+%-*(%*(->E%+G(
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d9\\&R9N&
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wa64 10 6 52 44 35 49 33 33 33 29 35 36 33 

wa64 10+4 12 51 44 35 49 32 30 33 27 33 35 33 

wa64 10+4 1 70 66 53 61 35 21 36 16 17 29 34 

wa32 10+4 1 65 68 45 60 30 24 38 29 31 47 44 

wa128 10+4 1 66 58 45 47 36 26 39 33 32 50 52 

wa64 1) 10+4 1 61 57 55 52 40 32 36 41 31 42 46 

wa32 2) 1 65 50 47 65 36 41 38 29 31 29 30 

wa32 3) 1 61 58 50 55 39 26 35 34 26 37 44 

1) Selective number of anomalies (only type 1, 2, 3, 6, 7, 10, and 13)
2) Using _high
3) Using _low

?;?&"^5&:\9LLSL&5Z&965W9\USL&

From Section 4.3 the dependence on different input and network configurations is seen to be 

not that large. No selection criteria are found with the help of LT or anomaly type separation. 

This indicates that either we have different processes that the network cannot separate or 

some of the anomalies have a cause, which is not introduced into the input data files.  

In order to find the different processes a closer investigation of the PCA was made. No clear 

correlation was found during times when the PCA1 started to vary. No correlation was found 

with the low fluxes of the PCA1 component. But after a closer inspection it was found that 

after a high PCA1 value it was 70% certain that an anomaly would occur. This led to a further 

investigation of what a high value of PCA1 indicated. How good indicator is this to predict 

anomalies? 

Table 8 shows the success using a high value of PCA1 as a tool for warning. In the table all 

three data files are used (_all, _high and _low). The level was calculated as percentages of the 

maximum value of PCA1 (different maximum for each data file). The level was set to 
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optimise the result. Depending on the level value the number of high values (column 3) will 

be different and hence the success of the warning system (column 7 and 8). From the 

presented combinations the probability that an anomaly will occur after a high value is high 

(60-78%). Comparing the prediction resolution (1 and 12 point) the anomaly often occurs less 

than 24 hours after a high value. The success rate is comparable to the success of the earlier 

trained net (Table 4). The number of anomalies is predicted with 41% success (compared with 

the total number of warnings 31%) when the prediction for non-anomalies is at 84-86%. 
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KUXK&

Y9\JSL&

9LL5:;&

KUXK&

R5U67L&

KUXK&Y9\JS&

Z5\\5^ST&][&

78JS&^986U6X&

KUXK&Y9\JS&657&

Z5\\5^ST&

965W9\USL&

Z5J6T&

656D

965W9\USL&

Z5J6T&

12 points 12 points 

_low lev.95 

max2.204 

1 point 730 3980 60% 

(439) 

40% 

(291) 

41% 

(237) 

86% 

_low lev.95 

max2.204 

12 point 730 3980 71% 

(519) 

29% 

(211) 

31% 

(1618) 

84% 

_high lev.94 

max1.506 

1 point 251 1341 78% 

(196) 

22% 

(55) 

23% 

(131) 

96% 

_high lev.94 

max1.506 

12 point 251 1341 84% 

(213) 

15% 

(38) 

15% 

(773) 

97% 

_all lev.95 

max3.68 

1 point 377 1941 75% 

(281) 

25% 

(96) 

29% 

(167) 

93% 

_all lev.95 

max3.68 

12 point 377 1941 83% 

(313) 

17% 

(64) 

20% 

(1038) 

96% 

The anomaly set was then divided into two groups; filter I (fI) and filter II (fII). Filter I 

contains warnings following a high value of PCA1. The level is selected so that about 1/5 of 

the warnings exist in the group of filter I. The warnings in filter II are the remainder (anomaly 

not clearly associated with high fluxes). In Table 9 a number of tests with different data 

combinations, levels and neural net sizes have been made. For each test of a combination 

three different training sets are tested (_all, _high, and _low). First the net is trained with all 

anomalies and tested both with the test set and then with the full data set in a time series (see 

Appendix). Secondly the net is trained with the case associated with high-flux-warnings and 

finally the net is trained with the warnings not associated with the high fluxes. In each square 

in Table 9 up to four percentages values are written; the top row is the success of the 

anomalies and the bottom is the success of the non-anomaly. Since the network gives a 

decimal output, the threshold of interpreting the output as warning or not warning can be set 
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to any value. We present in Table 9 one or two different results depending on the selected 

threshold. The threshold is selected in such way that the success rate on non-anomaly is close 

to or above 80%. 

"9]\S&=;&D#&+(>,*&(.->(+'#(/>#$%1+%-*(-.(0*-B0C%#&(-*(?#+#-&0+;@G(D'#(TCC(0*-B0C3(.%C+#>()(0*$(

.%C+#>())(0>#(+'#(&#C#1+%-*(-.( +'#(+>0%*%*H($0+0(&#+(L9[@(-.(0CC(0*-B0C%#&4(9[@(-.( +'#(0*-B0C%#&(

0&&-1%0+#$("%+'('%H'(.C,6#&(->(9[@(-.(+'#(0*-B0C%#&(*-+(0&&-1%0+#$("%+'(+'#('%H'(.C,6#&MG(D'#(

+#&+(1-C,B*(%&("'#*(+'#(*#+(%&(+#&+#$("%+'(+'#(>#B0%*%*H(8[@G(D'#(1-C,B*(+%B#(&#>%#&(%&("'#*(

0CC(0*-B0C%#&(0*$(0CC(*-*;0*-B0C%#&( L0//>-6%B0+#C3(9SR8K(/-%*+&M('0J#(E##*( +#&+#$(-*( +'#(

*#+G(!%*1#(+'#(-,+/,+(.>-B(+'#(*#+(%&(0($#1%B0C(*,BE#>(0*$(+'%&(10*(E#(1'-&#*($%..#>#*+C3("#(

/>#&#*+(+'#(>#&,C+&(.>-B(-*#(->(+"-(+'>#&'-C$&4(&#C#1+#$(1C-&#(+-(->(0E-J#(7O\(&,11#&&(.->(+'#(

*-*;0*-B0C%#&G(D'#(+-/(>-"(%&(.->(+'#(&,11#&&(-.(+'#(0*-B0C%#&(0*$(+'#(E-++-B(+'#(&,11#&&(-.(

+'#(*-*;0*-B0C%#&G(D'#($%..#>#*+(>-"&(0>#(1-$#&(0&(.-CC-"&](.%>&+( +'#(%*/,+($0+0(&-,>1#(+'#*(

"'#+'#>($0+0(0>#(E0&#$(-*(Y0CC4(Y'%H'(->(YC-"G(^#J#C(%&(+'#(C#J#C(,&#$(+-($%J%$#(+'#(0*-B0C%#&(

%*(.%C+#>()(_())($#/#*$%*H(-*(+'#(Y0CC4(Y'%H'(0*$(YC-"(.%C#&G(`#+(%&('-"(B0*3(%*/,+&(a(-,+/,+&(

0>#(,&#$(.->(#01'(10&#G(T*$(.%*0CC3(2:(%&(+'#(*,BE#>(-.(*#,>-*&(0*$(C03#>&(%*(+'#(+#&+#$(E01V(

/>-/0H0+%-*(*#+"->VG&

,S7S5L97&N& !S77U6XL& +\\&

965W;&

ZU\7S81& ZU\7S811&

$979& \SYS\&6S7&).& 7SL7& 7UWS&

LS8USL&

7SL7& 7UWS&

LS8USL&

7SL7& 7UWS&

LS8USL&

<& pa3 _all 0.96 9+1 6+2 57 41 

77 88 

56 40 

77 88 

94 

94 

26 

94 

25 50 

88 72 

32 59 

91 73 

I& wa64 _all 0.96 15+1 8+3 40 23 

77 91 

39 22 

79 91 

61 

86 

34 21 

83 92 

30 8 

82 96 

33 11 

83 96 

N& pa6 _low 0.96 18+1 9+3 46 32 

81 91 

48 33 

81 91 

82 

89 

39 27 

87 93 

27 7 

82 97 

25 7 

83 96 

?& pa6 _low 0.95 18+1 9+3 71 

91 

41 28 

86 93 

32 7 

76 96 

27 7 

77 96 

Q& pa5 _high 0.93 18+1 9+4 48 30 

79 91 

51 32 

78 91 

83 

93 

35 28 

88 92 

37 17 

80 94 

35 16 

80 95 

@& pa5 _all 0.95 18+1 9+3 47 31 

79 90 

50 34 

79 90 

92 

92 

32 28 

88 91 

36 3 

88 96 

42 14 

80 95 

>& pa6 wa64 _all 0.96 33+1 16+8 63 43 

66 80 

62 44 

68 83 

43 27 

75 87 

43 27 

76 89 

a& pa7 wa128 

_all 

0.95 33+1 10+6 52 35 

76 88 

53 38 

76 87 

92 

91 

32 28 

89 91 

37 20 

79 92 

39 20 

80 92 

=& pa3 wa32 _all 0.95 24+1 10+6 51 37 

78 89 

52 38 

77 88 

92 

92 

34 30 

90 92 

42 23 

75 89 

42 24 

77 90 

<E& pa3 wat32 _all 0.95 24+1 8+4 53 37 

76 88 

54 39 

76 87 

93 

91 

36 30 

88 91 

39 21 

76 91 

42 20 

87 92 

<<& pa3 wa32 _all 0.95 24+1 5+2 53 37 

75 88 

54 38 

75 88 

92 

92 

34 28 

89 92 

41 21 

75 91 

44 22 

78 92 

<I& pa3 wa32 _all 0.94 24+1 5+2 87 

89 

34 30 

89 91 

38 16 

79 93 

36 16 

78 94 
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<N& pa3 _all 0.95 9+1 5+2 48 32 

80 91 

48 32 

78 91 

91 

92 

34 23 

87 93 

38 17 

77 95 

36 14 

79 95 

<?& pa6 _all 0.95 18+1 5+2 53 35 

78 90 

54 36 

76 89 

92 

89 

31 26 

91 93 

43 18 

76 93 

39 17 

78 93 

<Q& pa6 _all 0.95 18+1 5+2 50 33 

80 91 

50 33 

78 91 

93 

91 

28 24 

91 94 

41 16 

79 94 

38 15 

79 94 

<@& pa3 _all 0.95 12+1 5+2 51 30 

78 91 

52 31 

76 91 

90 

91 

26 23 

92 94 

45 16 

77 95 

35 16 

78 95 

<>& pa2 _all 0.95 9+1 5+2 51 28 

77 92 

52 29 

77 92 

94 

87 

30 25 

89 92 

42 11 

77 97 

36 10 

77 96 

<a& pa2 _all 0.95 9+1 8 55 31 

74 91 

89 

91 

36 7 

78 97 

<=& .pa0 0.95 15+1 5+2 44 21 

78 93 

46 22 

79 93 

IE& .p01 0.95 15+1 5+2 40 23 

81 92 

42 25 

81 25 

I<& .p02 0.95 15+1 5+2 41 19 

82 94 

43 19 

80 94 

II& pa3+month 12 0.95 10+1 5+2 50 31 

79 92 

51 32 

78 91 

IN& pa3+month 6 0.95 10+1 5+2 56 32 

79 92 

51 33 

78 91 

IQ& pa3+year 0.95 10+1 5+2 51 34 

82 92 

IQ& pa3+hour 0.95 10+1 5+2 71 49 

56 80 

50 29 

78 92 

I@& pa6_all 0.95 18+1. 5+2 67 49 

63 81 

69 50 

61 79 

93 

90 

27 45 

91 80 

37 16 

80 94 

39 17 

82 95 

12 The year divided from 1 to 12. 

6 The year divided from 1-6,1-6 with the equinox centred. 

The separation of anomalies into warnings associated with high or low fluxes of electrons 

introduces no new information to the prediction (rows 1-18). If we calculate how many 

warnings the net trained with all predicted anomalies and compare that with how many 

anomalies are predicted with filterI and filterII together the result is almost equal. In filterII 

anomalies that were associated with high fluxes were removed, but predicted anomalies 

linked to high-flux, i.e. a failure to train a net to find another source to the anomalies than 

high fluxes of electrons. The models can only find the warnings that are associated with the 

high fluxes. 

In Table 9 tests have been done with only a combination of the PCA results (files described in 

Table 4) row 1, 6, etc. In row 2 only data from the frequency analysis is used. The prediction 

success rate using only the combination of the PCA is higher than only using the frequency 

analysis. If one adds the two parts (row 7, 11 etc.) we do not get any significantly higher 

success rates. A comparison between the _high (high energy) and the _low (low energy) is 

made in row 3-5 and then compared with row 6. There are no significant changes of the 

prediction rate. At row 13-18 different combinations of PCA (see Table 4) did not improve 
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the result. Consequently only three points of the PCA is enough to make the prediction. More 

points or dynamics (frequency analysis) will not increase the prediction success significantly. 

If one compares Table 9 with a linear combination of the high flux of PCA alone, a trained 

net prediction of the warnings to 43% and has success with 53% of all anomalies when 84 % 

of non-anomalies are correctly predicted. (For high flux alone the values were 31 % of the 

warnings or 41 % of the anomalies when 84 % of the non-anomalies are correctly predicted). 

In Table 10 and 11 the prediction success rates for the different local times and anomaly types 

are presented. As in Table 9 the net is trained on three different files, all the warnings (me), 

only warnings associated with high fluxes (fI) and finally the rest of the warnings (fII). The 

tested data file is the full time series, the prediction resolution 12 point (24 hours) or 1 point 

prediction resolution. The test with the prediction resolution of 1 point shows how many of 

the anomalies are predicted and compare with the 12 point prediction resolution when 

warnings can be shared with other anomalies. For filterII (fII) the threshold 0.5 is usually a 

little too high, with a threshold 0.4 the success rate is higher. 

"9]\S& <E;&D'#( />#$%1+%-*( &,11#&&( >0+#( .->( $%..#>#*+( 0*-B0C3( +3/#&( 0&( .,*1+%-*( -.( +'#( C-10C(

+%B#G(!##(+'#(+#6+(-.(D0EC#(88(.->(B->#(%*.->B0+%-*(-*(*-B#*1C0+,>#G&

threshold 0.5 

*5:9\&7UWS& EDI& ID?& ?D@& @Da& aD<E& <ED

<I&

<ID

<?&

<?D

<@&

<@D

<a&

<aD

IE&

IED

II&

IIDE&

+\\&965W;&

12 point 435 551 556 509 526 393 336 327 342 348 367 489 

1 point 50 64 61 60 62 44 34 33 37 35 39 51 

me-me-12 21 47 35 29 35 21 20 25 20 23 22 19 

me-me-1 36 69 57 50 48 27 18 36 24 20 28 33 

fI-me-12 17 38 31 30 26 23 20 19 19 26 20 18 

fI-me-1 24 50 48 47 47 32 26 30 24 26 26 27 

fII-me-12 14 18 20 8 16 5 4 10 2 9 8 10 

fII-me-1 24 25 26 13 15 7 3 15 5 6 13 18 

56\[&+

12 point 332 481 491 414 437 276 234 254 293 265 303 398 

me-me-12 21 47 35 29 35 21 20 25 20 23 22 19 

fI-me-12 40 32 29 22 27 21 18 18 27 19 17 

fII-me-12 28 26 16 23 12 6 18 6 12 14 13 

56\[&M&

12 point 103 70 65 95 89 117 102 73 49 83 64 91 

me-me-12 9 21 11 12 13 7 3 0 4 4 9 7 

fI-me-12 13 46 23 19 38 7 16 12 18 0 0 0 

fII-me-12 2 0 0 2 1 1 2 0 0 0 0 1 

56\[&2&

me-me-12 40 68 52 48 50 45 28 46 41 31 37 29 

fI-me-12 22 46 35 32 27 30 17 23 23 27 17 18 

fII-me-12 32 30 28 24 38 28 17 28 17 14 25 26 
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From Table 10 it can be seen that the best prediction is made in the local time sector 2-10 LT 

(as was found in Table 7). The number of correct warnings is up to twice the success rates at 

other local times. Most anomalies occur at these local times (Figure 4 and Section 4.2.3). If 

one remove the predicted warnings, the number of unpredicted warnings in each LT sector is 

fairly constant. There is a slight difference with fewer missed warnings between 10-22 LT. 

"9]\S&<<; D'#(/>#$%1+%-*(&,11#&&(.->(+'#($%..#>#*+(1-$#&("%+'(0(+'>#&'-C$(C#J#C(-.(OGR(L+'%&(%&(

'%H'(&/#1%0CC3(.->(.%C+#>))(&##(D0EC#(<MG(D'#(+0EC#(H%J#&(%*.->B0+%-*(-*(+'#(*,BE#>(-.("0>*%*H&(

.->(8(/-%*+(L"%+'%*(9;'-,>("0>*%*HM(0*$(*,BE#>(-.("0>*%*H&(.->(89(/-%*+(L"%+'%*(9N;'-,>(

"0>*%*HMG(D'#(.%>&+(C#++#>(H%J#&(%*.->B0+%-*(-*(+'#(+>0%*#$(0*-B0C3(&#+](B(,&#$(+'#(.,CC(

0*-B0C3(&#+(L9[@(+>0%*(8[@(+#&+M4()(.%C+#>()(L9[@(+>0%*(8[@(+#&+M(0*$())(.%C+#>())(L9[@(+>0%*(8[@(+#&+MG(

D'#(*,BE#>&(8(0*$(89(&'-"('-"(C-*H(E#.->#'0*$(+'#(*#+(&'-,C$(/>#$%1+(0*(0*-B0C3(L"%+'%*(9(

->(9N('-,>&MG(W->(b0CC(0*-Bb(0CC(0*-B0C%#&(0>#(,&#$4(c&->+(Tb(-*C3(0*-B0C%#&("%+'(1-$#(84(94(

@4(R4(K4(S(0*$(<(L0*-B0C%#&(+'0+('0J#(0('%H'(-11,>>#*1#(>0+#M4(b&->+(5b(-*C3(0*-B0C%#&("%+'(

1-$#(N4(74(8O4(884(894(8@4(8N4(8R4(8K4(8S(0*$(87(L0*-B0C%#&("%+'(C-"(-11,>>#*1#(>0+#M(0*$(

c&->+(Ab(0*-B0C%#&("%+'(1-$#(8(0*$(@(L0*-B0C%#&("%+'('%H'(&,11#&&(>0+#(.>-B(&->+(TMG&

level .5 

25TS& <& I& N& ?& Q& @& >& a& =& <E& <<& <I& <N& <?& <Q& <@& <>& <a&

<I& R5U67&

^986U6XL

224

7 

556 837 1 47 294 134 45 63 441 12 105 228 43 16 24 11 75 

<&R5U67&

^986U6XL

246 59 100 1 5 32 12 4 7 53 1 9 23 5 2 2 2 7 

9\\&965W

m-m-12 34 10 35 0 28 21 30 20 19 23 0 10 21 0 75 13 0 0 

m-m-1 47 19 54 0 60 28 42 0 43 36 0 22 35 0 50 50 0 0 

I-m-12 29 6 28 0 26 37 30 4 5 23 0 11 27 0 75 8 0 0 

I-m-1 41 14 43 0 40 41 42 0 29 36 0 11 35 0 50 50 0 0 

II-m-12 14 8 16 100 6 4 14 9 21 7 0 0 2 0 0 4 0 0 

II-m-1 18 12 24 100 20 13 8 0 29 6 0 0 0 0 0 50 0 0 

L587&+

m-m-12 37 11 38 28 23 29 24 

I-m-12 28 6 27 28 36 30 8 

II-m-12 20 11 20 15 6 17 22 

L587&M

m-m-12 0 2 11 0 1 9 9 50 0 0 0 

I-m-12 0 24 23 0 14 24 5 75 4 0 0 

II-m-12 0 0 1 0 0 1 2 0 0 0 0 

L587&2

m-m12 45 43 

I-m-12 27 28 

II-m-12 26 26 

In Table 11 the result is presented when studying the separate anomaly types (Table 2). The 

radiometer stops (code 1 and 3) seem to be associated with high fluxes of electrons. It is 

!"##$%&'()"(!*'+$,)()-'(./"0.&$'#(.##",$.)'+(1$)-()-'(%.))'*2(,-.*3'*(4,"+'(56(7(./+(89(./+(:;<
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(code 13) anomaly. The corrupted/lost image lines (code 10) that occur mainly at the end of 

the mission are also predictable. The other anomalies are not so easily predicted or the poor 

statistics is not able to give significant results. 

"9]\S&<I;&D'#(/-&&%E%C%+%#&(-.(/>#$%1+%*H(+'#(%*$%J%$,0C(+3/#&(-.(0*-B0C%#&G(I0+0(,&#$(0>#(/0@(

Y0CC( "%+'( <( %*/,+&( L*#+<a8M( 0*$( +"-( C03#>&( -.( E01V;/>-/0H0+%-*( L2:Ra9MG( :01'( +3/#( -.(

0*-B0C3( '0&( E##*( +>0%*#$( 0*$( +#&+#$( %*$%J%$,0CC3( #61#/+( 0*-B0C%#&( "%+'( C-"( .>#U,#*13( -.(

-11,>>#*1#(LB0>V#$(d(%*(+0EC#MG(D'#3('0J#(E##*(0*0C3&#$(+-H#+'#>(L&##(1-$#(NMG(W%>&+(1-C,B*(

%&( +'#(1-$#4( &#1-*$(1-C,B*(*,BE#>(-.( +-+0C("0>*%*H&4( &,11#&&( >0+#( .->( +'#( +#&+( .%C#( L.->( +"-(

$%..#>#*+(+'>#&'-C$&4(+-/(0*-B0C34(E-++-B(*-*;0*-B0C3M4(+'%>$(1-C,B*(+#&+(-.(&,11#&&("%+'(.,CC(

+%B#( >0*H#( L&,11#&&( -.( 0*-B0C3( -*C34( +'>#&'-C$( OGRMG( D'#( C0&+( +"#CJ#( 1-C,B*&( $#&1>%E#( +'#(

>#&,C+(.->(+'#(C-10C(+%B#(L9;'-,>(>#&-C,+%-*MG(D'#(+-/(J0C,#(%&(+'#(+-+0C(*,BE#>(-.(10&#&(%*(+'#(

C-10C(+%B#(&#1+->(0*$(+'#(E-++-B(%&(+'#(&,11#&&(%*(/#>1#*+0H#&G(

6JW]S8& "SL7& !587& <& I& N& ?& Q& @& >& a& =& <E& <<& <I&

<& 2247 36 55 

89 79 

39 138 

43 

178 

61 

303 

50 

280 

38 

277 

44 

169 

34 

121 

31 

153 

42 

186 

27 

115 

37 

140 

26 

187 

24 

I& 556 09 28 

97 81 

11 58 

21 

72 

8 

97 

5 

18 

0 

52 

11 

26 

0 

20 

0 

24 

0 

25 

92 

61 

18 

67 

0 

36 

0 

N& 837 28 50 

92 78 

30 133 

35 

138 

44 

80 

30 

67 

28 

46 

41 

45 

33 

57 

11 

51 

20 

24 

25 

25 

0 

29 

34 

142 

21 

?& * 1 30 56 

83 73 

41 28 

21 

66 

50 

20 

15 

22 

59 

24 

42 

24 

13 

48 

31 

12 

83 

24 

50 

29 

31 

16 

56 

24 

67 

Q& * 49

@& 294 38 75 

88 77 

41 0 

0 

29 

48 

0 

0 

37 

43 

38 

37 

24 

0 

12 

17 

14 

64 

22 

73 

40 

28 

45 

42 

33 

58 

>& 134 73 80 

79 75 

82 0 

0 

32 

63 

0 

0 

12 

83 

12 

83 

12 

92 

12 

83 

0 

0 

24 

83 

12 

100 

18 

94 

0 

0 

a& * 45

=& * 63

<E& 441 84 30 

83 

18 

56 

45 

80 

37 

81 

52 

92 

45 

87 

32 

84 

46 

74 

37 

76 

42 

95 

38 

89 

19 

95 

<<& * 12

<I& 105 46 32 

78 82 

67 24 

75 

12 

50 

11 

82 

12 

92 

0 

0 

12 

42 

10 

60 

0 

0 

0 

0 

0 

0 

0 

0 

24 

63 

<N& 228 40 56 

80 72 

45 24 

0 

6 

100 

0 

0 

24 

50 

25 

100 

36 

33 

24 

58 

27 

59 

0 

0 

24 

17 

14 

86 

24 

4 

<?& * 43

<Q& * 16

<@& * 24

<>& * 11

<a& * 75

* The number of all these different types is 337. The result of the run in row code 4.

#$%&'()'*+%&*,&-$%&./0&-)12+,*)31-4*2&51+&'1)-67&8$*+%2&-*&)%9(8%&-$%&2(3:%)&*,&42'(-+;&

#$%&)%+(6-&*,&#1:6%&<&)*5&=>=?&4+&-$1-&*267&@&'*42-+&*,&-$%&./0&1)%&2%%9%9&-*&31A%&-$%&

')%948-4*2;&B2&1994-4*2&-$%&./0&*)4C421-%+&,)*3&-$%&%6%8-)*2&,6(D%+&*,&-$%&EFG&42+-)(3%2-;&0(

)'#)(=#$/3()-'(>$?'('/'*32(%$/#(1$)-(@(+$>>'*'/)(!"$/)#()"(!*'+$,)()-'(./"0.&$'#(1.#(0.+'A(B-'&
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data file was set up as described in Table 5 row 1 and the result is given in Table 9 row 19. 

The statistical result is 10% worse than the PCA runs. The output of the model using PCA and 

the model using electron flux are different. The PCA analysis removes some of the large 

variation in the daily data, therefore the output signal from the PCA prediction is easier to 

interpret. In row 20 and 21 (Table 9) only the low energy and the high-energy bins are used 

(see Table 4 row 2 and 3). The result is the same as using the five energy bins and there is no 

clear difference between the low and the high bins. 

Up until now the input data have not contained any time information. In row 22-25 Table 9 

time has been introduced as input information. Information of the month, the equinox 

asymmetry is expected to improve the prediction (Figure 4). In row 22 the time is represented 

as the month of the year (decimal value). No improvements on the predictions were made so 

instead of 12 months, the time was selected to run only 6 months (half year) and shifted some 

days to get the equinox in the centre of the time period. This did not help either. The 

difference between different months (Figure 4) is already found in the information of the 

electron fluxes. 

The local time dependence has been stressed throughout this report. In row 25 Table 9 the 

prediction is made with help of the time of the day (UT). This does not lead to any higher 

prediction rate; the variation of the fluxes seems to be sufficient. 

For the anomalies we can see a change with time. The effect of ageing helps the network if 

the year is added as information. Again according to row 25 Table 9 there are no 

improvements. 

As tested in Table 11 there is a difference in the prediction rate of the different anomaly types. 

A new test was done but now the train and test sets are made up of only one type of anomaly 

(Table 12). The anomaly types, which have a low occurrence rate (code 4, 5, 8, 9, 11, 14, 15, 

16, 17, and 18), are combined as one anomaly code to get sufficient statistics. In Table 12 the 

total number of warnings for each anomaly type are presented in column 2. The result of the 

test file is represented in column 3 in the same way that the result is presented in Table 9. 

Column 4 is the prediction result for all the anomalies of the type with a threshold of 0.5. The 

last 12 columns show the prediction result divided up into local time sectors. For each local 

time the warning rate is associated to that sector and the success rate is presented as a 

percentage. For code 12 the prediction rate from the test file is 46% if the non-anomalies are 

allowed as low as 78%. Statistically this is 48 of the warnings that should be predicted out of 

105. But when we test the net on the total number of points (about 27391) the result can not 

be used. Due to the variety of different environment conditions in the training net for the 

warnings and the low number of cases in the training set (about 70 anomalies and 140 non-

anomalies) the net is not consistent. The predicted output in the test run with the continuous 

time series fluctuates constantly between 0 and 1. The result of the run is more luck than a 

trained prediction. For the anomalies code 13 the environment at the time of anomaly is more 

homogenous using the test run with the continuous time series even though the statistical 

result was worse (40% of the anomalies and 80% of the non-anomalies predicted). 

!"#$%#&'()$*&$)"+)$*,$)"#$-'./#%$0,$#1#-)&$,0%$)"*&$)23#$0,$40.3(#5$3%0/(#.$*&$(06$)"#$%#&'()$

.*7")$-0)$/#$70089$:-(2$*,$0-#$.+;#&$+$40-)*-'0'&$)*.#$&#%*#&$+-8$)#&)&$)"#$-#)$0-$)"#$)*.#$

&#%*#$ )"#$ <'+(*)2$ 0,$ )"#$ 3%#8*4)*0-$ 4+-$ /#$ #1+('+)#89$ =)$ *&$ -0)$ &',,*4*#-)$ 0-(2$ )0$ 3%#&#-)$ )"#$

&)+)*&)*4+($&'44#&&$0,$)"#$3%#8*4)*0-$%+)#&9$=-$#+%(*#%$&)'8*#&$)"#$)#&)$0,$+$40-)*-'0'&$)*.#$&#%*#&
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has not been used and the focus has been on the radiometer anomalies (code 1, 2, 3, 4). In this 

report (Table 12) the success rate between the three types of anomalies is different. The 

radiometer position jump (code 2) is hardly predicted at all while almost half of the 

radiometer stops (code 1) and the radiometer position jump and stop (code 3) are predicted 

much better. It might be that the stops are associated with high electron fluxes and jump is 

caused by something else. 

To separate the warnings associated with high fluxes did not give much better results. No 

clear correlation with LT or anomaly type was found. The introduction of PCA analysis 

improved the prediction rate and the analysis of the output (the prediction will not vary so 

much between two prediction points). No clear difference between the low and the high-

energy range was seen. The information of time exists already in the electron fluxes (as much 

as is needed). The anomalies were separated in order to find other causes than high-energy 

fluxes but this failed. Other types of information have to be introduced to the input to obtain a 

better result. If one removes the predicted anomalies the unpredicted anomalies are evenly 

distributed in local time. A high value of PCA1 (see Table 4 for levels) is followed with 60-

78% certainty by one or more anomalies within 1 day. With this prediction, up to 41% of the 

anomalies are predicted. The non-anomaly is still predicted with high accuracy (84-86%). An 

on-board monitor detecting high fluxes can automatically give a correct warning for up to 

41% of the anomalies that occurred on Meteosat-3. 

?;Q&)8STU:7U56&R5LLU]U\U7USL&JLU6X&6SJ89\&6S7^58`L&

Separating the warnings with the high fluxes did not improve the prediction rate significantly. 

The use of a high value as the warning signal is not preferable since most of the warnings are 

made less than 24 hours in advance. If one wishes to use the SEM-2 fluxes for prediction in 

real time, the clearest output signal is found when the neural net is trained only with warnings 

associated with high fluxes. In Figure 9 a period of time is presented. The result in the figure 

is from the run presented in Table 9 row 26. The lines in the continuous time sequence are 

from top to bottom: the Dst, the result of training with all anomalies, the result of training 

with only the anomalies not associated with high fluxes, the result of training with the 

anomalies associated with the high fluxes and finally the Kp index. The squared line in the 

three middle lines indicates when an anomaly occurred. They are 12 points long or longer 

indicating the resolution of the prediction (within 24-hour warning). If one allows a success 

rate of predicting the non-anomalies of 80% the warnings can be predicted to 47% (this will 

be about 57% of the total anomalies) for the net trained on the high fluxes. If one compare the 

three results from each net (line 2, 3 and 4), the line 2 (trained on all anomalies) is more or 

less the sum of lines 3 and 4. The net trained with the anomalies associated with high fluxes is 

the output that is easiest for an operator to use. The net trained on anomalies not associated 

with high fluxes (line 3) is better at predicting the start of a period of high fluxes.  

From comparing the predicted value and Dst we can see that the resemblance is not very 

good. One conclusion is that when Dst drops drastically (a magnetic storm) the prediction for 

the anomalies also drops. If one then compares the prediction result with Kp there is a much 

better correlation. The output from the net trained with all the anomalies (line 2) fluctuates
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Since the probability of predicting anomalies seems to be associated with increased fluxes of 

electrons, the result from analysing the time series at solar minimum shows a clearer picture. 

At solar minimum the storms are more regular and separated, and hence the net works better 

at the end. 
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The Meteosat-3 has an environment monitor (SEM-2) mounted on board. In this study the 

information from the SEM-2 has been used to predict the anomalies that occurred on 

Meteosat-3 during the mission. 

SEM-2 monitored the electron fluxes in five energy ranges from 43-300 keV. The mission 

started in June 1988 and continued for about seven years. During this time Meteosat-3 had on 

the average anomalies during 20% of the days. 

When analysing on-board measurements of electrons the time resolution must be better than 

24 hours because the natural variation of the electron fluxes is larger than the difference 

between anomaly and non-anomaly conditions. 

In order to keep the number of inputs into the prediction model as low as possible a PCA 

analysis was performed on the measured electron fluxes. When using only the largest 

component from the PCA analysis 41% of anomalies can be predicted. The probability that a 

high value of the PCA first component will be followed by an anomaly within 24 hours is 60-

78%. The non-anomalies are correctly predicted to 84-86%. 

The result from neural network prediction 24 hours ahead was that 43% of the warnings (i.e. 

53% of the anomalies) were predicted when 84 % of the non-anomalies are correctly 

predicted. This is about 10% better than the method described above. 

The predicted anomalies were associated with high flux of electrons and seem to be 

independent on energy level. Attempts to find other causes than high electron fluxes were 

made but failed using this data set. These data only give information about the flux of 

electrons in different energy bins. The study of the local time dependency and anomaly types 

did not improve the prediction. 

Using the results of this study, one can conclude that an on-board monitor with relatively high 

temporal resolution combined with an automatic warning system could be based on 

information on high fluxes to be able to give a warning for at least the next 24-hour period. 

The warning system for a satellite operator can be based on the anomalies associated with the 

high electron fluxes (Figure 9 line 4). It is recommended that environment monitors always be 

included on-board spacecraft. Not only to make it possible to predict times of higher risk for

!"#"$%& '(& )'#*'+%+,-& '.& -/-,%#& ("012.%-& 32,& "1-'& ,'$%,4%.& 50,4& 0+-,.2#%+,-& '+& ',4%.&

-*")%)."(,&,'&*.'!2)%&"&!","&3"-%&,4",&)"+&4%1*&2-&,'&2+!%.-,"+!&,4%&-*")%&%+60.'+#%+,&"+!&0,-&

%((%),-&3%,,%.7&8'+$&,0#%&-%.0%-&'(&!","&5011&3%&+%%!%!&0+&,4%&+%".&(2,2.%&,'&-%*".",%&1'+$9,%.#&&

%,,%8-+&,)*3&H1)41-4*2+&*2&+$*)-%)&-43%>+816%+;&#$4+&-7'%&*,&42H%+-4C1-4*2+&812&:%&8*3'1)%9&-*&

-$%&43'*)-128%&*,&$1H42C&6*2C&-43%&+%)4%+&*,&C)*(29&-%3'%)1-()%&3%1+()%3%2-+&-*&(29%)+-129&

-$%&86431-%&8$12C%+&*2&-$%&F1)-$;&



3"

@&+:`65^\STXSWS67L&

We wish to thank the ESA-TOS-EMA for initiating this project and their interest throughout 

its completion. Special thanks belong to the ESTEC Technical Officer Dr. Alain Hilgers and 

to Dr. Eamonn Daly whose comments and support were particularly useful. 

>&/SZS8S6:SL&

Anselmo, J.C., Solar storm eyed as a satellite killer, Aviation week and Space Technology, 

January 27, 1997. 

Baker, D.N., J.H. Allen, R.D. Belian, J.B. Blake, S.G. Kanekal, B. Klecker, R.P. Lepping, X. 

Li, R.A. Mewaldt, K. Ogilvie, T. Onsager, G.D. Reeves, G. Rostoker, R.B. Sheldon, H.J. 

Singer, H.E. Spence, and N. Turner, An assessment of space environmental conditions 

during the recent Anik E1 spacecraft operation failure, ISTP Newsletter, Vol 6, No. 2, 

June 1996. 

Coates, A.J. , A.D. Johonstone, D.J. Rodgers, and G.L. Wrenn, Quest for the source of 

Meteosat anomalies, Proc. Spacecraft Charging Technology Conference 1989, Naval 

Postgraduate School, 120-146, 1991. 

Fredrickson, A.R., Radiation induced dielectric charging, in “Space Systems and their 

interactions with the Earth's space environment,” Eds. Garett and Pile, Vol 71, 386-412, 

AIAA, Washington DC, 1980. 

Frezet, M., E.J. Daly, J.P. Granger, and J. Hamelin, Assessment of electrostatic charging of 

satellites in the geostationary environment. ESA Journal Vol 13, 89-116, 1989. 

Grystad, D., Meteosat operational anomalies correlation with the space environment, Design 

project report ESTEC, 1997. 

Hoge, D., and D. Leverington, Investigation of electrostatic discharge phenomena on the 

Meteosat spacecraft, ESA Journal, 3, 101-113, 1979. 

Hoge, D.G., Meteosat spacecraft charging investigation, ESA N82-14265, 1980. 



3I

Hoge, D.G., Results of Meteosat-F2 spacecraft charging monitors, in Proceedings of an 

International Symposium on Spacecraft Materials in space, ESA SP-178, 1982. 

Klecker, B., Energetic particle environment in near-Earth orbit, Adv. Space Res., 17, (2)37-

(2)45, 1996. 

Kumar, P., and E. Foufoula-Georgiou, Wavelet analysis for geophysical applications. Rev. of 

Geophys., 35, 385-412, 1997. 

Lanzerotti, L.J., C. Berglia, D.W. Maurer, G.K. Johnson III, and C.G. Maclennan, Studies of 

spacecraft charging on a geosynchronous telecommunications satellite, in Proceeding of 

the 1996 COSPAR conference. 

López Honrubia, F.J., and A. Hilgers, Relationship between Meteosat time-tag anomalies and 

the high energy electron environment: A non-linear approach. Internal ESTEC working 

paper, no 1886, 1996. 

López Honrubia, F.J., and A. Hilgers, Some correlation techniques for environmentally 

induced anomalies analysis. J. Spacecraft and Rocket, 670-674, 1997. 

Rodgers, D.J., Correlation of METEOSAT-3 anomalies with data from the spacecraft 

environment monitor, Internal ESTEC working paper, no.1620, 1991. 

Rodgers, D.J., A.J., Coates, A.D. Johnstone, and E.J. Daly, Correlation of METEOSAT-3 

anomalies with data from the space environment monitor, in Proceedings of the ESA 

Workshop on Space Weather, WPP-ISS, Noordwijk, The Netherlands, 1999. 

Vampola, A.L., Analysis of environmentally induced spacecraft anomalies, J. Spacecraft and 

Rockets, Vol 31, March-April, 1994. 

Wilkinson, D.C., National Oceanic and Atmospheric Administration's spacecraft anomaly 

data base and examples of solar activity affecting spacecraft, J. Spacecraft and Rockets , 

Vol 31, March-April, 1994. 

Wrenn, G.L., and A.J. Sims, Surface charging on spacecraft in geosynchronous orbit, in “The 

Behaviour of Systems in the Space Environment,” Eds. R.N. DeWitt et al., Kluwer 

Academic Publ., Netherlands, 491-511, 1993. 



3J

+RRS6TUV&<&

$979&R85:SLLU6X&

For all data files that have been used throughout this report the train and test files have been 

created in the same way. When using neural networks one needs to know their limitations. A 

neural net is mainly sensitive to the first two significant figures. If the data have a high 

dynamic range, over several orders of magnitude, the data have to be pre-processed. Taking 

the logarithm of the electron fluxes gives a smaller dynamic range and a more linear coverage 

between the minimum value and the maximum value. The neural net is built up so that the 

input values are between 0 and 1 or between -1 and 1 depending on the selected linear 

transform. The software that we have used was from NeuralWare. This software makes the 

normalisation and therefore the files used in this report are not normalised. 

To make predictions two files are needed, a training set and a test set. After creating a data 

file where the columns represent the input into a prediction and the rows represent the 

different times (cases), the last column is the desired value (if anomaly occurred within the 

selected time window or not). If the desired value is 0 this indicates that no anomaly occurred 

within the resolution and if it is 1 an anomaly occurred. For the total time period with the data 

at a resolution of 2 hours (the rows in the files) there will be many more non-anomaly cases 

than anomaly cases. If the prediction is for an anomaly within 24 hours the data file will 

contain 20% anomalies and 80% non-anomalies. If a net is trained with this relation it would 

be good at predicting non-anomalies. The relation between the two categories should be more 

like 1:1. A net that will cause too many false warnings would not be useful, so there are more 

non-anomalies than anomalies used. Throughout the report twice as many non-anomalies as 

anomalies have been used in the training and test files. All the selected anomaly/warning 

cases and twice the number of randomly selected non-anomalies are used to create one 

training and one test file. If only one anomaly type is analysed, all the other types of 

anomalies will exist in the non-anomaly category and the random selection can select them to 

represent a time with non-anomaly. The anomaly and the non-anomaly cases are randomly 

divided, 2/3 to a training set and 1/3 into a test set. 

In the example of 24-hour prediction about 80% of the non-anomalies are not used in the 

training or the test set and could be added to the test set. Instead, an extra testing file was 

created consisting of all the cases in time order. This test file gives us information about the 

success of the non-anomaly prediction and how the prediction will look like in real time. By 

comparing the output from the time series test file, we can gain a good understanding of the 

usefulness of the net. 

The output from the neural network is a decimal value. When the net is trained, a threshold 

needs to be set to separate when the network predicts anomaly or non-anomaly. In this report 

the threshold is selected so that the non-anomaly is predicted around 80% or better. This is 

equal to a false warning every fifth day. 

The anomalies that are detected occurred at a given time. The data set that is created 

(description in Section 4) has a resolution of 2 hours. The desired output from our net will 

produce a prediction of whether an anomaly will occur within a time period. If the data set is 
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to predict anomalies within 24 hours, an anomaly will cause 12 rows (if they are in time 

sequence) to indicate an anomaly. If two anomalies occur closer than 24 hours apart they will 

create fewer than 24 rows of ones. As a result the number of ones in a created data file is not 

equal to the number of anomalies (times the resolution of the prediction). At the times when 

we can predict anomalies, more anomalies than one can occur in 24 hours. 

A back propagation learning algorithm is used to train the neural network. Other networks can 

improve the result, but the highest possibility of getting a network to converge is with a back 

propagation network. 
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Principal component analysis, PCA, is a linear projection of multivariable data. The variables 

have to be correlated or else the PCA is meaningless. The new set of variables, the PCs, is 

linear combinations of the original variables. The largest variance is the first direction PCA1. 

The PCA2 is then orthogonal to PCA1 and the direction is defined by the direction of largest 

variance perpendicular to the first direction. That is, each PCA is derived in decreasing order 

of importance (Waldemark, 1996). 

The method originates from the eigenvector analysis. Let x be an eigenvector of size N to a 

linear operator +&(an N x M matrix).&This is

+x = &x

where & is the eigenvalue to the linear operator + and its eigenvector x.

To get the maximum variance in PCA1 the eigenvalues are sorted in decreasing order 

&1 > &2 >....>&N, where the eigenvalue &1 corresponds to PCA1. 

All diagonal terms are equal to one in the correlation matrix. Thus, the sum of the diagonal 

terms will be equal to N (the diagonal sum is equal to the sum of the variance of the 

standardised variables). This gives that 

 '&i = N 

and the percentage of the total variance that each PC explains is simply &i /N 

Software for neural networks 

The prediction model is made with a commercial package, Neural Works Professional II Plus 

(Neural Computing, 1996). This package gives the user a possibility to test different networks 

and improve the efficiency of the tested network. It also produces C-code for the trained 

network so one can transfer the network to another platform. 

The neural network needs only a linear data file for analysis. The network itself normalises 

the data from the file, minimum and maximum values or by a users selection. Transformation 

functions and learning rules can be selected. 

The program offers selection of different network types. In this work the classic back-

propagation network has been used. 
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The number of layers and neurons are easy to change. Different momentum and learning 

coefficients can be used during iteration. 
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